Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] Fix correct num_classes of HRNet in LoveDA dataset #1136

Merged
merged 1 commit into from
Dec 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions configs/hrnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,6 @@ High-resolution representations are essential for position-sensitive vision prob

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | config | download |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.72 | 30.07 | 49.3 | 49.23 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211105_180825-41dcc5dc.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211105_180825.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.90 | 16.77 | 50.87 | 51.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211105_165542-95be4d2b.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211105_165542.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.25 | 9.09 | 51.04 | 51.12 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211105_131509-f07e47c6.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211105_131509.log.json) |
| FCN | HRNetV2p-W18-Small | 512x512 | 80000 | 1.59 | 24.87 | 49.28 | 49.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18s_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json) |
| FCN | HRNetV2p-W18 | 512x512 | 80000 | 2.76 | 12.92 | 50.81 | 50.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr18_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json) |
| FCN | HRNetV2p-W48 | 512x512 | 80000 | 6.20 | 9.61 | 51.42 | 51.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/master/configs/hrnet/fcn_hr48_512x512_80k_loveda.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json) |
1 change: 1 addition & 0 deletions configs/hrnet/fcn_hr18_512x512_80k_loveda.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,4 @@
'../_base_/models/fcn_hr18.py', '../_base_/datasets/loveda.py',
'../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
]
model = dict(decode_head=dict(num_classes=7))
30 changes: 15 additions & 15 deletions configs/hrnet/hrnet.yml
Original file line number Diff line number Diff line change
Expand Up @@ -455,62 +455,62 @@ Models:
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 33.26
- value: 40.21
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 1.72
Training Memory (GB): 1.59
Results:
- Task: Semantic Segmentation
Dataset: LoveDA
Metrics:
mIoU: 49.3
mIoU(ms+flip): 49.23
mIoU: 49.28
mIoU(ms+flip): 49.42
Config: configs/hrnet/fcn_hr18s_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211105_180825-41dcc5dc.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth
- Name: fcn_hr18_512x512_80k_loveda
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W18
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 59.63
- value: 77.4
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 2.9
Training Memory (GB): 2.76
Results:
- Task: Semantic Segmentation
Dataset: LoveDA
Metrics:
mIoU: 50.87
mIoU(ms+flip): 51.24
mIoU: 50.81
mIoU(ms+flip): 50.95
Config: configs/hrnet/fcn_hr18_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211105_165542-95be4d2b.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth
- Name: fcn_hr48_512x512_80k_loveda
In Collection: hrnet
Metadata:
backbone: HRNetV2p-W48
crop size: (512,512)
lr schd: 80000
inference time (ms/im):
- value: 110.01
- value: 104.06
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (512,512)
Training Memory (GB): 6.25
Training Memory (GB): 6.2
Results:
- Task: Semantic Segmentation
Dataset: LoveDA
Metrics:
mIoU: 51.04
mIoU(ms+flip): 51.12
mIoU: 51.42
mIoU(ms+flip): 51.64
Config: configs/hrnet/fcn_hr48_512x512_80k_loveda.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211105_131509-f07e47c6.pth
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth