Skip to content

Commit

Permalink
add tool pytorch2torchscript (#469)
Browse files Browse the repository at this point in the history
* add tool pytorch2torchscript

* fix the assert message for pytorch version.
  • Loading branch information
sshuair authored Apr 19, 2021
1 parent 67eee62 commit 8f37e55
Show file tree
Hide file tree
Showing 2 changed files with 196 additions and 0 deletions.
12 changes: 12 additions & 0 deletions docs/useful_tools.md
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,18 @@ Description of arguments:

**Note**: This tool is still experimental. Some customized operators are not supported for now.

### Convert to TorchScript (experimental)

We also provide a script to convert model to [TorchScript](https://pytorch.org/docs/stable/jit.html) format. You can use the pytorch C++ API [LibTorch](https://pytorch.org/docs/stable/cpp_index.html) inference the trained model. The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron). Besides, we also support comparing the output results between Pytorch and TorchScript model.

```shell
python tools/pytorch2torchscript.py ${CONFIG_FILE} --checkpoint ${CHECKPOINT_FILE} --output-file ${ONNX_FILE} [--shape ${INPUT_SHAPE} --verify]
```

**Note**: It's only support PyTorch>=1.8.0 for now.

**Note**: This tool is still experimental. Some customized operators are not supported for now.

## Miscellaneous

### Print the entire config
Expand Down
184 changes: 184 additions & 0 deletions tools/pytorch2torchscript.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
import argparse

import mmcv
import numpy as np
import torch
import torch._C
import torch.serialization
from mmcv.runner import load_checkpoint
from torch import nn

from mmseg.models import build_segmentor

torch.manual_seed(3)


def digit_version(version_str):
digit_version = []
for x in version_str.split('.'):
if x.isdigit():
digit_version.append(int(x))
elif x.find('rc') != -1:
patch_version = x.split('rc')
digit_version.append(int(patch_version[0]) - 1)
digit_version.append(int(patch_version[1]))
return digit_version


def check_torch_version():
torch_minimum_version = '1.8.0'
torch_version = digit_version(torch.__version__)

assert (torch_version >= digit_version(torch_minimum_version)), \
f'Torch=={torch.__version__} is not support for converting to ' \
f'torchscript. Please install pytorch>={torch_minimum_version}.'


def _convert_batchnorm(module):
module_output = module
if isinstance(module, torch.nn.SyncBatchNorm):
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
module_output.weight.data = module.weight.data.clone().detach()
module_output.bias.data = module.bias.data.clone().detach()
# keep requires_grad unchanged
module_output.weight.requires_grad = module.weight.requires_grad
module_output.bias.requires_grad = module.bias.requires_grad
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
for name, child in module.named_children():
module_output.add_module(name, _convert_batchnorm(child))
del module
return module_output


def _demo_mm_inputs(input_shape, num_classes):
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple):
input batch dimensions
num_classes (int):
number of semantic classes
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
segs = rng.randint(
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': 1.0,
'flip': False,
} for _ in range(N)]
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas,
'gt_semantic_seg': torch.LongTensor(segs)
}
return mm_inputs


def pytorch2libtorch(model,
input_shape,
show=False,
output_file='tmp.pt',
verify=False):
"""Export Pytorch model to TorchScript model and verify the outputs are
same between Pytorch and TorchScript.
Args:
model (nn.Module): Pytorch model we want to export.
input_shape (tuple): Use this input shape to construct
the corresponding dummy input and execute the model.
show (bool): Whether print the computation graph. Default: False.
output_file (string): The path to where we store the
output TorchScript model. Default: `tmp.pt`.
verify (bool): Whether compare the outputs between
Pytorch and TorchScript. Default: False.
"""
if isinstance(model.decode_head, nn.ModuleList):
num_classes = model.decode_head[-1].num_classes
else:
num_classes = model.decode_head.num_classes

mm_inputs = _demo_mm_inputs(input_shape, num_classes)

imgs = mm_inputs.pop('imgs')

# replace the orginal forword with forward_dummy
model.forward = model.forward_dummy
model.eval()
traced_model = torch.jit.trace(
model,
example_inputs=imgs,
check_trace=verify,
)

if show:
print(traced_model.graph)

traced_model.save(output_file)
print('Successfully exported TorchScript model: {}'.format(output_file))


def parse_args():
parser = argparse.ArgumentParser(
description='Convert MMSeg to TorchScript')
parser.add_argument('config', help='test config file path')
parser.add_argument('--checkpoint', help='checkpoint file', default=None)
parser.add_argument(
'--show', action='store_true', help='show TorchScript graph')
parser.add_argument(
'--verify', action='store_true', help='verify the TorchScript model')
parser.add_argument('--output-file', type=str, default='tmp.pt')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[512, 512],
help='input image size (height, width)')
args = parser.parse_args()
return args


if __name__ == '__main__':
args = parse_args()
check_torch_version()

if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (
1,
3,
) + tuple(args.shape)
else:
raise ValueError('invalid input shape')

cfg = mmcv.Config.fromfile(args.config)
cfg.model.pretrained = None

# build the model and load checkpoint
cfg.model.train_cfg = None
segmentor = build_segmentor(
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
# convert SyncBN to BN
segmentor = _convert_batchnorm(segmentor)

if args.checkpoint:
load_checkpoint(segmentor, args.checkpoint, map_location='cpu')

# convert the PyTorch model to LibTorch model
pytorch2libtorch(
segmentor,
input_shape,
show=args.show,
output_file=args.output_file,
verify=args.verify)

0 comments on commit 8f37e55

Please sign in to comment.