-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add tool pytorch2torchscript * fix the assert message for pytorch version.
- Loading branch information
Showing
2 changed files
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
import argparse | ||
|
||
import mmcv | ||
import numpy as np | ||
import torch | ||
import torch._C | ||
import torch.serialization | ||
from mmcv.runner import load_checkpoint | ||
from torch import nn | ||
|
||
from mmseg.models import build_segmentor | ||
|
||
torch.manual_seed(3) | ||
|
||
|
||
def digit_version(version_str): | ||
digit_version = [] | ||
for x in version_str.split('.'): | ||
if x.isdigit(): | ||
digit_version.append(int(x)) | ||
elif x.find('rc') != -1: | ||
patch_version = x.split('rc') | ||
digit_version.append(int(patch_version[0]) - 1) | ||
digit_version.append(int(patch_version[1])) | ||
return digit_version | ||
|
||
|
||
def check_torch_version(): | ||
torch_minimum_version = '1.8.0' | ||
torch_version = digit_version(torch.__version__) | ||
|
||
assert (torch_version >= digit_version(torch_minimum_version)), \ | ||
f'Torch=={torch.__version__} is not support for converting to ' \ | ||
f'torchscript. Please install pytorch>={torch_minimum_version}.' | ||
|
||
|
||
def _convert_batchnorm(module): | ||
module_output = module | ||
if isinstance(module, torch.nn.SyncBatchNorm): | ||
module_output = torch.nn.BatchNorm2d(module.num_features, module.eps, | ||
module.momentum, module.affine, | ||
module.track_running_stats) | ||
if module.affine: | ||
module_output.weight.data = module.weight.data.clone().detach() | ||
module_output.bias.data = module.bias.data.clone().detach() | ||
# keep requires_grad unchanged | ||
module_output.weight.requires_grad = module.weight.requires_grad | ||
module_output.bias.requires_grad = module.bias.requires_grad | ||
module_output.running_mean = module.running_mean | ||
module_output.running_var = module.running_var | ||
module_output.num_batches_tracked = module.num_batches_tracked | ||
for name, child in module.named_children(): | ||
module_output.add_module(name, _convert_batchnorm(child)) | ||
del module | ||
return module_output | ||
|
||
|
||
def _demo_mm_inputs(input_shape, num_classes): | ||
"""Create a superset of inputs needed to run test or train batches. | ||
Args: | ||
input_shape (tuple): | ||
input batch dimensions | ||
num_classes (int): | ||
number of semantic classes | ||
""" | ||
(N, C, H, W) = input_shape | ||
rng = np.random.RandomState(0) | ||
imgs = rng.rand(*input_shape) | ||
segs = rng.randint( | ||
low=0, high=num_classes - 1, size=(N, 1, H, W)).astype(np.uint8) | ||
img_metas = [{ | ||
'img_shape': (H, W, C), | ||
'ori_shape': (H, W, C), | ||
'pad_shape': (H, W, C), | ||
'filename': '<demo>.png', | ||
'scale_factor': 1.0, | ||
'flip': False, | ||
} for _ in range(N)] | ||
mm_inputs = { | ||
'imgs': torch.FloatTensor(imgs).requires_grad_(True), | ||
'img_metas': img_metas, | ||
'gt_semantic_seg': torch.LongTensor(segs) | ||
} | ||
return mm_inputs | ||
|
||
|
||
def pytorch2libtorch(model, | ||
input_shape, | ||
show=False, | ||
output_file='tmp.pt', | ||
verify=False): | ||
"""Export Pytorch model to TorchScript model and verify the outputs are | ||
same between Pytorch and TorchScript. | ||
Args: | ||
model (nn.Module): Pytorch model we want to export. | ||
input_shape (tuple): Use this input shape to construct | ||
the corresponding dummy input and execute the model. | ||
show (bool): Whether print the computation graph. Default: False. | ||
output_file (string): The path to where we store the | ||
output TorchScript model. Default: `tmp.pt`. | ||
verify (bool): Whether compare the outputs between | ||
Pytorch and TorchScript. Default: False. | ||
""" | ||
if isinstance(model.decode_head, nn.ModuleList): | ||
num_classes = model.decode_head[-1].num_classes | ||
else: | ||
num_classes = model.decode_head.num_classes | ||
|
||
mm_inputs = _demo_mm_inputs(input_shape, num_classes) | ||
|
||
imgs = mm_inputs.pop('imgs') | ||
|
||
# replace the orginal forword with forward_dummy | ||
model.forward = model.forward_dummy | ||
model.eval() | ||
traced_model = torch.jit.trace( | ||
model, | ||
example_inputs=imgs, | ||
check_trace=verify, | ||
) | ||
|
||
if show: | ||
print(traced_model.graph) | ||
|
||
traced_model.save(output_file) | ||
print('Successfully exported TorchScript model: {}'.format(output_file)) | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser( | ||
description='Convert MMSeg to TorchScript') | ||
parser.add_argument('config', help='test config file path') | ||
parser.add_argument('--checkpoint', help='checkpoint file', default=None) | ||
parser.add_argument( | ||
'--show', action='store_true', help='show TorchScript graph') | ||
parser.add_argument( | ||
'--verify', action='store_true', help='verify the TorchScript model') | ||
parser.add_argument('--output-file', type=str, default='tmp.pt') | ||
parser.add_argument( | ||
'--shape', | ||
type=int, | ||
nargs='+', | ||
default=[512, 512], | ||
help='input image size (height, width)') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
if __name__ == '__main__': | ||
args = parse_args() | ||
check_torch_version() | ||
|
||
if len(args.shape) == 1: | ||
input_shape = (1, 3, args.shape[0], args.shape[0]) | ||
elif len(args.shape) == 2: | ||
input_shape = ( | ||
1, | ||
3, | ||
) + tuple(args.shape) | ||
else: | ||
raise ValueError('invalid input shape') | ||
|
||
cfg = mmcv.Config.fromfile(args.config) | ||
cfg.model.pretrained = None | ||
|
||
# build the model and load checkpoint | ||
cfg.model.train_cfg = None | ||
segmentor = build_segmentor( | ||
cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg')) | ||
# convert SyncBN to BN | ||
segmentor = _convert_batchnorm(segmentor) | ||
|
||
if args.checkpoint: | ||
load_checkpoint(segmentor, args.checkpoint, map_location='cpu') | ||
|
||
# convert the PyTorch model to LibTorch model | ||
pytorch2libtorch( | ||
segmentor, | ||
input_shape, | ||
show=args.show, | ||
output_file=args.output_file, | ||
verify=args.verify) |