Skip to content

Commit

Permalink
[Docs] Translate installation and 15_min (#629)
Browse files Browse the repository at this point in the history
* translate installation and 15_min

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/15_minutes.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/15_minutes.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/15_minutes.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>

* Update docs/en/get_started/15_minutes.md

Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com>

* Update docs/en/get_started/15_minutes.md

Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com>

* Update docs/en/get_started/15_minutes.md

Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com>

* Update docs/en/get_started/installation.md

Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com>

Co-authored-by: Zaida Zhou <58739961+zhouzaida@users.noreply.github.com>
Co-authored-by: Qian Zhao <112053249+C1rN09@users.noreply.github.com>
  • Loading branch information
3 people authored Oct 19, 2022
1 parent aaba1d8 commit dc01545
Show file tree
Hide file tree
Showing 2 changed files with 313 additions and 3 deletions.
240 changes: 239 additions & 1 deletion docs/en/get_started/15_minutes.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,241 @@
# 15 minutes to get started with MMEngine

Coming soon. Please refer to [chinese documentation](https://mmengine.readthedocs.io/zh_CN/latest/get_started/15_minutes.html).
In this tutorial, we'll take training a ResNet-50 model on CIFAR-10 dataset as an example. We will build a complete and configurable pipeline for both training and validation in only 80 lines of code with `MMEgnine`.
The whole process includes the following steps:

1. [Build a Model](#build-a-model)
2. [Build a Dataset and DataLoader](#build-a-dataset-and-dataloader)
3. [Build a Evaluation Metrics](#build-a-evaluation-metrics)
4. [Build a Runner and Run the Task](#build-a-runner-and-run-the-task)

## Build a Model

First, we need to build a **model**. In MMEngine, the model should inherit from `BaseModel`. Aside from parameters representing inputs from the dataset, its `forward` method needs to accept an extra argument called `mode`:

- for training, the value of `mode` is "loss," and the `forward` method should return a `dict` containing the key "loss".
- for validation, the value of `mode` is "predict", and the forward method should return results containing both predictions and labels.

```python
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel


class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()

def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
```

## Build a Dataset and DataLoader

Next, we need to create **Dataset** and **DataLoader** for training and validation.
For basic training and validation, we can simply use built-in datasets supported in TorchVision.

```python
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))

val_dataloader = DataLoader(batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))
```

## Build a Evaluation Metrics

To validate and test the model, we need to define a **Metric** called accuracy to evaluate the model. This metric needs inherit from `BaseMetric` and implements the `process` and `compute_metrics` methods where the `process` method accepts the output of the dataset and other outputs when `mode="predict"`. The output data at this scenario is a batch of data. After processing this batch of data, we save the information to `self.results` property.
`compute_metrics` accepts a `results` parameter. The input `results` of `compute_metrics` is all the information saved in `process` (In the case of a distributed environment, `results` are the information collected from all `process` in all the processes). Use these information to calculate and return a `dict` that holds the results of the evaluation metrics

```python
from mmengine.evaluator import BaseMetric

class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
# save the middle result of a batch to `self.results`
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})

def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
# return the dict containing the eval results
# the key is the name of the metric name
return dict(accuracy=100 * total_correct / total_size)
```

## Build a Runner and Run the Task

Now we can build a **Runner** with previously defined `Model`, `DataLoader`, and `Metrics`, and some other configs shown as follows:

```python
from torch.optim import SGD
from mmengine.runner import Runner

runner = Runner(
# the model used for training and validation.
# Needs to meet specific interface requirements
model=MMResNet50(),
# working directory which saves training logs and weight files
work_dir='./work_dir',
# train dataloader needs to meet the PyTorch data loader protocol
train_dataloader=train_dataloader,
# optimize wrapper for optimization with additional features like
# AMP, gradtient accumulation, etc
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
# trainging coinfs for specifying training epoches, verification intervals, etc
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
# validation dataloaer also needs to meet the PyTorch data loader protocol
val_dataloader=val_dataloader,
# validation configs for specifying additional parameters required for validation
val_cfg=dict(),
# validation evaluator. The default one is used here
val_evaluator=dict(type=Accuracy),
)

runner.train()
```

Finally, let's put all the codes above together into a complete script that uses the `MMEngine` executor for training and validation:

<a href="https://colab.research.google.com/github/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/get_started.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/></a>

```python
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.optim import SGD
from torch.utils.data import DataLoader

from mmengine.evaluator import BaseMetric
from mmengine.model import BaseModel
from mmengine.runner import Runner


class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()

def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels


class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})

def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
return dict(accuracy=100 * total_correct / total_size)


norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))

val_dataloader = DataLoader(batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)
])))

runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
runner.train()
```

Training log would be similar to this:

```
2022/08/22 15:51:53 - mmengine - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]
CUDA available: True
numpy_random_seed: 1513128759
GPU 0: NVIDIA GeForce GTX 1660 SUPER
CUDA_HOME: /usr/local/cuda
...
2022/08/22 15:51:54 - mmengine - INFO - Checkpoints will be saved to /home/mazerun/work_dir by HardDiskBackend.
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][10/1563] lr: 1.0000e-03 eta: 0:18:23 time: 0.1414 data_time: 0.0077 memory: 392 loss: 5.3465
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][20/1563] lr: 1.0000e-03 eta: 0:11:29 time: 0.0354 data_time: 0.0077 memory: 392 loss: 2.7734
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][30/1563] lr: 1.0000e-03 eta: 0:09:10 time: 0.0352 data_time: 0.0076 memory: 392 loss: 2.7789
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][40/1563] lr: 1.0000e-03 eta: 0:08:00 time: 0.0353 data_time: 0.0073 memory: 392 loss: 2.5725
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][50/1563] lr: 1.0000e-03 eta: 0:07:17 time: 0.0347 data_time: 0.0073 memory: 392 loss: 2.7382
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][60/1563] lr: 1.0000e-03 eta: 0:06:49 time: 0.0347 data_time: 0.0072 memory: 392 loss: 2.5956
2022/08/22 15:51:58 - mmengine - INFO - Epoch(train) [1][70/1563] lr: 1.0000e-03 eta: 0:06:28 time: 0.0348 data_time: 0.0072 memory: 392 loss: 2.7351
...
2022/08/22 15:52:50 - mmengine - INFO - Saving checkpoint at 1 epochs
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][10/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 392
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][20/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 308
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][30/313] eta: 0:00:03 time: 0.0123 data_time: 0.0047 memory: 308
...
2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313] accuracy: 35.7000
```

In addition to these basic components, you can also use **executor** to easily combine and configure various training techniques, such as enabling mixed-precision training and gradient accumulation (see [OptimWrapper](../tutorials/optim_wrapper.md)), configuring the learning rate decay curve (see [Metrics & Evaluator](../tutorials/evaluation.md)), and etc.
76 changes: 74 additions & 2 deletions docs/en/get_started/installation.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,75 @@
## Installation
# Installation

Coming soon. Please refer to [chinese documentation](https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html).
## Prerequisites

- Python 3.6+
- PyTorch 1.6+
- CUDA 9.2+
- GCC 5.4+

## Prepare the Environment

1. Use conda and activate the environment:

```bash
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
```

2. Install PyTorch

Before installing `MMEngine`, please make sure that PyTorch has been successfully installed in the environment. You can refer to [PyTorch official installation documentation](https://pytorch.org/get-started/locally/#start-locally). Verify the installation with the following command:

```bash
python -c 'import torch;print(torch.__version__)'
```

## Install MMEngine

### Install with mim

[mim](https://github.com/open-mmlab/mim) is a package management tool for OpenMMLab projects, which can be used to install the OpenMMLab project easily.

```bash
pip install -U openmim
mim install mmengine
```

### Install with pip

```bash
pip install mmengine
```

### Use docker images

1. Build the image

```bash
docker build -t mmengine https://github.com/open-mmlab/mmengine.git#main:docker/release
```

More information can be referred from [mmengine/docker](https://github.com/open-mmlab/mmengine/tree/main/docker).

2. Run the image

```bash
docker run --gpus all --shm-size=8g -it mmengine
```

#### Build from source

```bash
# if cloning speed is too slow, you can switch the source to https://gitee.com/open-mmlab/mmengine.git
git clone https://github.com/open-mmlab/mmengine.git
cd mmengine
pip install -e . -v
```

### Verify the Installation

To verify if `MMEngine` and the necessary environment are successfully installed, we can run this command:

```bash
python -c 'import mmengine;print(mmengine.__version__)'
```

0 comments on commit dc01545

Please sign in to comment.