-
Notifications
You must be signed in to change notification settings - Fork 9.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add msdeformattn pixel decoder (#7466)
fix typo rm img_metas rename in pixel_decoder update comments rename fix typo generae points with MlvlPointGenerator
- Loading branch information
Showing
4 changed files
with
342 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,9 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from .dropblock import DropBlock | ||
from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder | ||
from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder | ||
|
||
__all__ = ['DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder'] | ||
__all__ = [ | ||
'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder', | ||
'MSDeformAttnPixelDecoder' | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from mmcv.cnn import (PLUGIN_LAYERS, Conv2d, ConvModule, caffe2_xavier_init, | ||
normal_init, xavier_init) | ||
from mmcv.cnn.bricks.transformer import (build_positional_encoding, | ||
build_transformer_layer_sequence) | ||
from mmcv.runner import BaseModule, ModuleList | ||
|
||
from mmdet.core.anchor import MlvlPointGenerator | ||
from mmdet.models.utils.transformer import MultiScaleDeformableAttention | ||
|
||
|
||
@PLUGIN_LAYERS.register_module() | ||
class MSDeformAttnPixelDecoder(BaseModule): | ||
"""Pixel decoder with multi-scale deformable attention. | ||
Args: | ||
in_channels (list[int] | tuple[int]): Number of channels in the | ||
input feature maps. | ||
strides (list[int] | tuple[int]): Output strides of feature from | ||
backbone. | ||
feat_channels (int): Number of channels for feature. | ||
out_channels (int): Number of channels for output. | ||
num_outs (int): Number of output scales. | ||
norm_cfg (:obj:`mmcv.ConfigDict` | dict): Config for normalization. | ||
Defaults to dict(type='GN', num_groups=32). | ||
act_cfg (:obj:`mmcv.ConfigDict` | dict): Config for activation. | ||
Defaults to dict(type='ReLU'). | ||
encoder (:obj:`mmcv.ConfigDict` | dict): Config for transformer | ||
encoder. Defaults to `DetrTransformerEncoder`. | ||
positional_encoding (:obj:`mmcv.ConfigDict` | dict): Config for | ||
transformer encoder position encoding. Defaults to | ||
dict(type='SinePositionalEncoding', num_feats=128, | ||
normalize=True). | ||
init_cfg (:obj:`mmcv.ConfigDict` | dict): Initialization config dict. | ||
""" | ||
|
||
def __init__(self, | ||
in_channels=[256, 512, 1024, 2048], | ||
strides=[4, 8, 16, 32], | ||
feat_channels=256, | ||
out_channels=256, | ||
num_outs=3, | ||
norm_cfg=dict(type='GN', num_groups=32), | ||
act_cfg=dict(type='ReLU'), | ||
encoder=dict( | ||
type='DetrTransformerEncoder', | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type='BaseTransformerLayer', | ||
attn_cfgs=dict( | ||
type='MultiScaleDeformableAttention', | ||
embed_dims=256, | ||
num_heads=8, | ||
num_levels=3, | ||
num_points=4, | ||
im2col_step=64, | ||
dropout=0.0, | ||
batch_first=False, | ||
norm_cfg=None, | ||
init_cfg=None), | ||
feedforward_channels=1024, | ||
ffn_dropout=0.0, | ||
operation_order=('self_attn', 'norm', 'ffn', 'norm')), | ||
init_cfg=None), | ||
positional_encoding=dict( | ||
type='SinePositionalEncoding', | ||
num_feats=128, | ||
normalize=True), | ||
init_cfg=None): | ||
super().__init__(init_cfg=init_cfg) | ||
self.strides = strides | ||
self.num_input_levels = len(in_channels) | ||
self.num_encoder_levels = \ | ||
encoder.transformerlayers.attn_cfgs.num_levels | ||
assert self.num_encoder_levels >= 1, \ | ||
'num_levels in attn_cfgs must be at least one' | ||
input_conv_list = [] | ||
# from top to down (low to high resolution) | ||
for i in range(self.num_input_levels - 1, | ||
self.num_input_levels - self.num_encoder_levels - 1, | ||
-1): | ||
input_conv = ConvModule( | ||
in_channels[i], | ||
feat_channels, | ||
kernel_size=1, | ||
norm_cfg=norm_cfg, | ||
act_cfg=None, | ||
bias=True) | ||
input_conv_list.append(input_conv) | ||
self.input_convs = ModuleList(input_conv_list) | ||
|
||
self.encoder = build_transformer_layer_sequence(encoder) | ||
self.postional_encoding = build_positional_encoding( | ||
positional_encoding) | ||
# high resolution to low resolution | ||
self.level_encoding = nn.Embedding(self.num_encoder_levels, | ||
feat_channels) | ||
|
||
# fpn-like structure | ||
self.lateral_convs = ModuleList() | ||
self.output_convs = ModuleList() | ||
self.use_bias = norm_cfg is None | ||
# from top to down (low to high resolution) | ||
# fpn for the rest features that didn't pass in encoder | ||
for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, | ||
-1): | ||
lateral_conv = ConvModule( | ||
in_channels[i], | ||
feat_channels, | ||
kernel_size=1, | ||
bias=self.use_bias, | ||
norm_cfg=norm_cfg, | ||
act_cfg=None) | ||
output_conv = ConvModule( | ||
feat_channels, | ||
feat_channels, | ||
kernel_size=3, | ||
stride=1, | ||
padding=1, | ||
bias=self.use_bias, | ||
norm_cfg=norm_cfg, | ||
act_cfg=act_cfg) | ||
self.lateral_convs.append(lateral_conv) | ||
self.output_convs.append(output_conv) | ||
|
||
self.mask_feature = Conv2d( | ||
feat_channels, out_channels, kernel_size=1, stride=1, padding=0) | ||
|
||
self.num_outs = num_outs | ||
self.point_generator = MlvlPointGenerator(strides) | ||
|
||
def init_weights(self): | ||
"""Initialize weights.""" | ||
for i in range(0, self.num_encoder_levels): | ||
xavier_init( | ||
self.input_convs[i].conv, | ||
gain=1, | ||
bias=0, | ||
distribution='uniform') | ||
|
||
for i in range(0, self.num_input_levels - self.num_encoder_levels): | ||
caffe2_xavier_init(self.lateral_convs[i].conv, bias=0) | ||
caffe2_xavier_init(self.output_convs[i].conv, bias=0) | ||
|
||
caffe2_xavier_init(self.mask_feature, bias=0) | ||
|
||
normal_init(self.level_encoding, mean=0, std=1) | ||
for p in self.encoder.parameters(): | ||
if p.dim() > 1: | ||
nn.init.xavier_normal_(p) | ||
|
||
# init_weights defined in MultiScaleDeformableAttention | ||
for layer in self.encoder.layers: | ||
for attn in layer.attentions: | ||
if isinstance(attn, MultiScaleDeformableAttention): | ||
attn.init_weights() | ||
|
||
def forward(self, feats): | ||
""" | ||
Args: | ||
feats (list[Tensor]): Feature maps of each level. Each has | ||
shape of (batch_size, c, h, w). | ||
Returns: | ||
tuple: A tuple containing the following: | ||
- mask_feature (Tensor): shape (batch_size, c, h, w). | ||
- multi_scale_features (list[Tensor]): Multi scale \ | ||
features, each in shape (batch_size, c, h, w). | ||
""" | ||
# generate padding mask for each level, for each image | ||
batch_size = feats[0].shape[0] | ||
encoder_input_list = [] | ||
padding_mask_list = [] | ||
level_positional_encoding_list = [] | ||
spatial_shapes = [] | ||
reference_points_list = [] | ||
for i in range(self.num_encoder_levels): | ||
level_idx = self.num_input_levels - i - 1 | ||
feat = feats[level_idx] | ||
feat_projected = self.input_convs[i](feat) | ||
h, w = feat.shape[-2:] | ||
|
||
# no padding | ||
padding_mask_resized = feat.new_zeros( | ||
(batch_size, ) + feat.shape[-2:], dtype=torch.bool) | ||
pos_embed = self.postional_encoding(padding_mask_resized) | ||
level_embed = self.level_encoding.weight[i] | ||
level_pos_embed = level_embed.view(1, -1, 1, 1) + pos_embed | ||
# (h_i * w_i, 2) | ||
reference_points = self.point_generator.single_level_grid_priors( | ||
feat.shape[-2:], level_idx, device=feat.device) | ||
# normalize | ||
factor = feat.new_tensor([[w, h]]) * self.strides[level_idx] | ||
reference_points = reference_points / factor | ||
|
||
# shape (batch_size, c, h_i, w_i) -> (h_i * w_i, batch_size, c) | ||
feat_projected = feat_projected.flatten(2).permute(2, 0, 1) | ||
level_pos_embed = level_pos_embed.flatten(2).permute(2, 0, 1) | ||
padding_mask_resized = padding_mask_resized.flatten(1) | ||
|
||
encoder_input_list.append(feat_projected) | ||
padding_mask_list.append(padding_mask_resized) | ||
level_positional_encoding_list.append(level_pos_embed) | ||
spatial_shapes.append(feat.shape[-2:]) | ||
reference_points_list.append(reference_points) | ||
# shape (batch_size, total_num_query), | ||
# total_num_query=sum([., h_i * w_i,.]) | ||
padding_masks = torch.cat(padding_mask_list, dim=1) | ||
# shape (total_num_query, batch_size, c) | ||
encoder_inputs = torch.cat(encoder_input_list, dim=0) | ||
level_positional_encodings = torch.cat( | ||
level_positional_encoding_list, dim=0) | ||
device = encoder_inputs.device | ||
# shape (num_encoder_levels, 2), from low | ||
# resolution to high resolution | ||
spatial_shapes = torch.as_tensor( | ||
spatial_shapes, dtype=torch.long, device=device) | ||
# shape (0, h_0*w_0, h_0*w_0+h_1*w_1, ...) | ||
level_start_index = torch.cat((spatial_shapes.new_zeros( | ||
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) | ||
reference_points = torch.cat(reference_points_list, dim=0) | ||
reference_points = reference_points[None, :, None].repeat( | ||
batch_size, 1, self.num_encoder_levels, 1) | ||
valid_radios = reference_points.new_ones( | ||
(batch_size, self.num_encoder_levels, 2)) | ||
# shape (num_total_query, batch_size, c) | ||
memory = self.encoder( | ||
query=encoder_inputs, | ||
key=None, | ||
value=None, | ||
query_pos=level_positional_encodings, | ||
key_pos=None, | ||
attn_masks=None, | ||
key_padding_mask=None, | ||
query_key_padding_mask=padding_masks, | ||
spatial_shapes=spatial_shapes, | ||
reference_points=reference_points, | ||
level_start_index=level_start_index, | ||
valid_radios=valid_radios) | ||
# (num_total_query, batch_size, c) -> (batch_size, c, num_total_query) | ||
memory = memory.permute(1, 2, 0) | ||
|
||
# from low resolution to high resolution | ||
num_query_per_level = [e[0] * e[1] for e in spatial_shapes] | ||
outs = torch.split(memory, num_query_per_level, dim=-1) | ||
outs = [ | ||
x.reshape(batch_size, -1, spatial_shapes[i][0], | ||
spatial_shapes[i][1]) for i, x in enumerate(outs) | ||
] | ||
|
||
for i in range(self.num_input_levels - self.num_encoder_levels - 1, -1, | ||
-1): | ||
x = feats[i] | ||
cur_feat = self.lateral_convs[i](x) | ||
y = cur_feat + F.interpolate( | ||
outs[-1], | ||
size=cur_feat.shape[-2:], | ||
mode='bilinear', | ||
align_corners=False) | ||
y = self.output_convs[i](y) | ||
outs.append(y) | ||
multi_scale_features = outs[:self.num_outs] | ||
|
||
mask_feature = self.mask_feature(outs[-1]) | ||
return mask_feature, multi_scale_features |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.