Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for Ascend devices with gather_points #2555

Merged
merged 1 commit into from
Jan 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/en/understand_mmcv/ops.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ We implement common ops used in detection, segmentation, etc.
| FurthestPointSample | | √ | | | |
| FurthestPointSampleWithDist | | √ | | | |
| FusedBiasLeakyrelu | | √ | | | √ |
| GatherPoints | | √ | | | |
| GatherPoints | | √ | | | |
| GroupPoints | | √ | | | |
| Iou3d | | √ | √ | | |
| KNN | | √ | | | |
Expand Down
2 changes: 1 addition & 1 deletion docs/zh_cn/understand_mmcv/ops.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ MMCV 提供了检测、分割等任务中常用的算子
| FurthestPointSample | | √ | | | |
| FurthestPointSampleWithDist | | √ | | | |
| FusedBiasLeakyrelu | | √ | | | √ |
| GatherPoints | | √ | | | |
| GatherPoints | | √ | | | |
| GroupPoints | | √ | | | |
| Iou3d | | √ | √ | | |
| KNN | | √ | | | |
Expand Down
29 changes: 29 additions & 0 deletions mmcv/ops/csrc/pytorch/npu/gather_points_npu.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
#include "pytorch_npu_helper.hpp"

using namespace NPU_NAME_SPACE;
using namespace std;

void gather_points_forward_npu(int b, int c, int n, int npoints,
const Tensor points, const Tensor idx,
Tensor out) {
// b, c, n, and npoints do not need to be passed into gatherv2,
// b, c, n, and npoints are calculated inside the operator
// gatherv2 operator in ascend needs to set axis to 2, batch_dims is 1
c10::SmallVector<int64_t, N> axis = {2};
int64_t batch_dims = 1;

OpCommand cmd;
cmd.Name("GatherV2")
.Input(points)
.Input(idx)
.Input(axis)
.Output(out)
.Attr("batch_dims", batch_dims)
.Run();
}

void gather_points_forward_impl(int b, int c, int n, int npoints,
const Tensor points, const Tensor idx,
Tensor out);

REGISTER_NPU_IMPL(gather_points_forward_impl, gather_points_forward_npu);
98 changes: 57 additions & 41 deletions tests/test_ops/test_gather_points.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,49 +3,65 @@
import torch

from mmcv.ops import gather_points
from mmcv.utils import IS_CUDA_AVAILABLE, IS_NPU_AVAILABLE


@pytest.mark.skipif(
not torch.cuda.is_available(), reason='requires CUDA support')
def test_gather_points():
features = torch.tensor([[[
-1.6095, -0.1029, -0.8876, -1.2447, -2.4031, 0.3708, -1.1586, -1.4967,
-0.4800, 0.2252
],
[
1.9138, 3.4979, 1.6854, 1.5631, 3.6776,
3.1154, 2.1705, 2.5221, 2.0411, 3.1446
],
[
-1.4173, 0.3073, -1.4339, -1.4340, -1.2770,
-0.2867, -1.4162, -1.4044, -1.4245, -1.4074
]],
[[
0.2160, 0.0842, 0.3661, -0.2749, -0.4909,
-0.6066, -0.8773, -0.0745, -0.9496, 0.1434
],
[
1.3644, 1.8087, 1.6855, 1.9563, 1.2746,
1.9662, 0.9566, 1.8778, 1.1437, 1.3639
],
[
-0.7172, 0.1692, 0.2241, 0.0721, -0.7540,
0.0462, -0.6227, 0.3223, -0.6944, -0.5294
]]]).cuda()
class TestGatherPoints:

idx = torch.tensor([[0, 1, 4, 0, 0, 0], [0, 5, 6, 0, 0, 0]]).int().cuda()
@pytest.mark.parametrize('device', [
pytest.param(
'cuda',
marks=pytest.mark.skipif(
not IS_CUDA_AVAILABLE, reason='requires CUDA support')),
pytest.param(
'npu',
marks=pytest.mark.skipif(
not IS_NPU_AVAILABLE, reason='requires NPU support'))
])
def test_gather_points_all_close(self, device):
features = torch.tensor(
[[[
-1.6095, -0.1029, -0.8876, -1.2447, -2.4031, 0.3708, -1.1586,
-1.4967, -0.4800, 0.2252
],
[
1.9138, 3.4979, 1.6854, 1.5631, 3.6776, 3.1154, 2.1705,
2.5221, 2.0411, 3.1446
],
[
-1.4173, 0.3073, -1.4339, -1.4340, -1.2770, -0.2867, -1.4162,
-1.4044, -1.4245, -1.4074
]],
[[
0.2160, 0.0842, 0.3661, -0.2749, -0.4909, -0.6066, -0.8773,
-0.0745, -0.9496, 0.1434
],
[
1.3644, 1.8087, 1.6855, 1.9563, 1.2746, 1.9662, 0.9566,
1.8778, 1.1437, 1.3639
],
[
-0.7172, 0.1692, 0.2241, 0.0721, -0.7540, 0.0462, -0.6227,
0.3223, -0.6944, -0.5294
]]],
dtype=torch.float,
device=device)
idx = torch.tensor([[0, 1, 4, 0, 0, 0], [0, 5, 6, 0, 0, 0]],
dtype=torch.int32,
device=device)
output = gather_points(features, idx)
expected_output = torch.tensor(
[[[-1.6095, -0.1029, -2.4031, -1.6095, -1.6095, -1.6095],
[1.9138, 3.4979, 3.6776, 1.9138, 1.9138, 1.9138],
[-1.4173, 0.3073, -1.2770, -1.4173, -1.4173, -1.4173]],
[[0.2160, -0.6066, -0.8773, 0.2160, 0.2160, 0.2160],
[1.3644, 1.9662, 0.9566, 1.3644, 1.3644, 1.3644],
[-0.7172, 0.0462, -0.6227, -0.7172, -0.7172, -0.7172]]],
dtype=torch.float,
device=device)

output = gather_points(features, idx)
expected_output = torch.tensor(
[[[-1.6095, -0.1029, -2.4031, -1.6095, -1.6095, -1.6095],
[1.9138, 3.4979, 3.6776, 1.9138, 1.9138, 1.9138],
[-1.4173, 0.3073, -1.2770, -1.4173, -1.4173, -1.4173]],
[[0.2160, -0.6066, -0.8773, 0.2160, 0.2160, 0.2160],
[1.3644, 1.9662, 0.9566, 1.3644, 1.3644, 1.3644],
[-0.7172, 0.0462, -0.6227, -0.7172, -0.7172, -0.7172]]]).cuda()
assert torch.allclose(output, expected_output)

assert torch.allclose(output, expected_output)

# test fp16
output_half = gather_points(features.half(), idx)
assert torch.allclose(output_half, expected_output.half())
# test fp16
output_half = gather_points(features.half(), idx)
assert torch.allclose(output_half, expected_output.half())