Skip to content

Splitting slowfast configurations #1753

Open
@abdulazizab2

Description

@abdulazizab2

I have searched related issues and tried to do the implementation with no success.

I am aiming to split a spatio-temporal action detection model into two configuration files. Base and Head
A configuration for the backbone (type=fastrcnn) and a configuration for roi_head. This will help me to export the backbone into onnx.

The problem is, I can't load the model from the config once I changed the configuration. Is there an example to follow. As every time I want to load base or head I get errors thrown

model = dict(
    roi_head=dict(
        type="SingleRoIExtractor3D",
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor3D',
            roi_layer_type='RoIAlign',
            output_size=8,
            with_temporal_pool=True,
            temporal_pool_mode='max'),
        shared_head=dict(type='ACRNHead', in_channels=4608, out_channels=2304),
        bbox_head=dict(
            type='BBoxHeadAVA',
            dropout_ratio=0.5,
            in_channels=2304,
            num_classes=81,
            multilabel=True)),
    train_cfg=dict(
        rcnn=dict(
            assigner=dict(
                type='MaxIoUAssignerAVA',
                pos_iou_thr=0.9,
                neg_iou_thr=0.9,
                min_pos_iou=0.9),
            sampler=dict(
                type='RandomSampler',
                num=32,
                pos_fraction=1,
                neg_pos_ub=-1,
                add_gt_as_proposals=True),
            pos_weight=1.0,
            debug=False)),
    test_cfg=dict(rcnn=dict(action_thr=0.002)))

dataset_type = 'AVADataset'
data_root = 'data/ava/rawframes'
anno_root = 'data/ava/annotations'

ann_file_train = f'{anno_root}/ava_train_v2.2.csv'
ann_file_val = f'{anno_root}/ava_val_v2.2.csv'

exclude_file_train = f'{anno_root}/ava_train_excluded_timestamps_v2.2.csv'
exclude_file_val = f'{anno_root}/ava_val_excluded_timestamps_v2.2.csv'

label_file = f'{anno_root}/ava_action_list_v2.2_for_activitynet_2019.pbtxt'

proposal_file_train = (f'{anno_root}/ava_dense_proposals_train.FAIR.'
                       'recall_93.9.pkl')
proposal_file_val = f'{anno_root}/ava_dense_proposals_val.FAIR.recall_93.9.pkl'

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_bgr=False)

train_pipeline = [
    dict(type='SampleAVAFrames', clip_len=32, frame_interval=2),
    dict(type='RawFrameDecode'),
    dict(type='RandomRescale', scale_range=(256, 320)),
    dict(type='RandomCrop', size=256),
    dict(type='Flip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW', collapse=True),
    dict(type='Rename', mapping=dict(imgs='img')),
    dict(type='ToTensor', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']),
    dict(
        type='ToDataContainer',
        fields=[
            dict(key=['proposals', 'gt_bboxes', 'gt_labels'], stack=False)
        ]),
    dict(
        type='Collect',
        keys=['img', 'proposals', 'gt_bboxes', 'gt_labels'],
        meta_keys=['scores', 'entity_ids'])
]
# The testing is w/o. any cropping / flipping
val_pipeline = [
    dict(
        type='SampleAVAFrames', clip_len=32, frame_interval=2, test_mode=True),
    dict(type='RawFrameDecode'),
    dict(type='Resize', scale=(-1, 256)),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='FormatShape', input_format='NCTHW', collapse=True),
    dict(type='Rename', mapping=dict(imgs='img')),
    dict(type='ToTensor', keys=['img', 'proposals']),
    dict(type='ToDataContainer', fields=[dict(key='proposals', stack=False)]),
    dict(
        type='Collect',
        keys=['img', 'proposals'],
        meta_keys=['scores', 'img_shape'],
        nested=True)
]

data = dict(
    videos_per_gpu=6,
    workers_per_gpu=2,
    val_dataloader=dict(videos_per_gpu=1),
    test_dataloader=dict(videos_per_gpu=1),
    train=dict(
        type=dataset_type,
        ann_file=ann_file_train,
        exclude_file=exclude_file_train,
        pipeline=train_pipeline,
        label_file=label_file,
        proposal_file=proposal_file_train,
        person_det_score_thr=0.9,
        data_prefix=data_root),
    val=dict(
        type=dataset_type,
        ann_file=ann_file_val,
        exclude_file=exclude_file_val,
        pipeline=val_pipeline,
        label_file=label_file,
        proposal_file=proposal_file_val,
        person_det_score_thr=0.9,
        data_prefix=data_root))
data['test'] = data['val']
# optimizer
optimizer = dict(type='SGD', lr=0.075, momentum=0.9, weight_decay=0.00001)
# this lr is used for 8 gpus
optimizer_config = dict(grad_clip=dict(max_norm=40, norm_type=2))
# learning policy
lr_config = dict(
    policy='CosineAnnealing',
    by_epoch=False,
    min_lr=0,
    warmup='linear',
    warmup_by_epoch=True,
    warmup_iters=2,
    warmup_ratio=0.1)
total_epochs = 10
checkpoint_config = dict(interval=1)
workflow = [('train', 1)]
evaluation = dict(interval=1)
log_config = dict(
    interval=20, hooks=[
        dict(type='TextLoggerHook'),
    ])
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/slowfast_acrn_kinetics_pretrained_r50_8x8x1_cosine_10e_ava22_rgb'  # noqa: E501
load_from = 'https://download.openmmlab.com/mmaction/recognition/slowfast/slowfast_r50_8x8x1_256e_kinetics400_rgb/slowfast_r50_8x8x1_256e_kinetics400_rgb_20200716-73547d2b.pth'  # noqa: E501
resume_from = None
find_unused_parameters = False

I get an error that the model type is missing, I tried to use different types but no success.

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions