Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add node tests for quantized ops #1944

Merged
merged 10 commits into from
Apr 18, 2019
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
230 changes: 230 additions & 0 deletions docs/Operators.md
Original file line number Diff line number Diff line change
Expand Up @@ -2491,6 +2491,42 @@ This version of the operator has been available since version 10 of the default
</dl>


#### Examples

<details>
<summary>convinteger</summary>

```python

x = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10]).astype(np.uint8).reshape((1, 1, 3, 3))
x_zero_point = np.array([1]).astype(np.uint8)
w = np.array([1, 1, 1, 1]).astype(np.uint8).reshape((1, 1, 2, 2))

y = np.array([12, 16, 24, 28]).astype(np.int32).reshape(1, 1, 2, 2)

# ConvInteger without padding
convinteger_node = onnx.helper.make_node('ConvInteger',
inputs=['x', 'w', 'x_zero_point'],
outputs=['y'])

expect(convinteger_node, inputs=[x, w, x_zero_point], outputs=[y],
name='test_basic_convinteger')

# ConvInteger with padding
y_with_padding = np.array([1, 3, 5, 3, 5, 12, 16, 9, 11, 24, 28, 15, 7, 15, 17, 9]).astype(np.int32).reshape((1, 1, 4, 4))

convinteger_node_with_padding = onnx.helper.make_node('ConvInteger',
inputs=['x', 'w', 'x_zero_point'],
outputs=['y'],
pads=[1, 1, 1, 1],)

expect(convinteger_node_with_padding, inputs=[x, w, x_zero_point], outputs=[y_with_padding],
name='test_convinteger_with_padding')
```

</details>


### <a name="ConvTranspose"></a><a name="convtranspose">**ConvTranspose**</a>

The convolution transpose operator consumes an input tensor and a filter,
Expand Down Expand Up @@ -3104,6 +3140,29 @@ This version of the operator has been available since version 10 of the default
</dl>


#### Examples

<details>
<summary>dequantizelinear</summary>

```python
node = onnx.helper.make_node('DequantizeLinear',
inputs=['x', 'x_scale', 'x_zero_point'],
outputs=['y'],)

# scalar zero point and scale
x = np.array([0, 3, 128, 255]).astype(np.uint8)
x_scale = np.array([2], dtype=np.float32)
x_zero_point = np.array([128], dtype=np.uint8)
y = np.array([-256, -250, 0, 254], dtype=np.float32)

expect(node, inputs=[x, x_scale, x_zero_point], outputs=[y],
name='test_dequantizelinear')
```

</details>


### <a name="Div"></a><a name="div">**Div**</a>

Performs element-wise binary division (with Numpy-style broadcasting support).
Expand Down Expand Up @@ -6219,6 +6278,41 @@ This version of the operator has been available since version 10 of the default
</dl>


#### Examples

<details>
<summary>matmulinteger</summary>

```python
node = onnx.helper.make_node('MatMulInteger',
inputs=['A', 'B', 'a_zero_point', 'b_zero_point'],
outputs=['Y'],)

A = np.array([[11, 7, 3],
[10, 6, 2],
[9, 5, 1],
[8, 4, 0], ], dtype=np.uint8)

a_zero_point = np.array([12], dtype=np.uint8)

B = np.array([[1, 4],
[2, 5],
[3, 6], ], dtype=np.uint8)

b_zero_point = np.array([0], dtype=np.uint8)

output = np.array([[-38, -83],
[-44, -98],
[-50, -113],
[-56, -128], ], dtype=np.int32)

expect(node, inputs=[A, B, a_zero_point, b_zero_point], outputs=[output],
name='test_matmulinteger')
```

</details>


### <a name="Max"></a><a name="max">**Max**</a>

Element-wise max of each of the input tensors (with Numpy-style broadcasting support).
Expand Down Expand Up @@ -8122,6 +8216,50 @@ This version of the operator has been available since version 10 of the default
</dl>


#### Examples

<details>
<summary>qlinearconv</summary>

```python
node = onnx.helper.make_node('QLinearConv',
inputs=['x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],)

x = np.array([[255, 174, 162, 25, 203, 168, 58],
[15, 59, 237, 95, 129, 0, 64],
[56, 242, 153, 221, 168, 12, 166],
[232, 178, 186, 195, 237, 162, 237],
[188, 39, 124, 77, 80, 102, 43],
[127, 230, 21, 83, 41, 40, 134],
[255, 154, 92, 141, 42, 148, 247], ], dtype=np.uint8).reshape((1, 1, 7, 7))

x_scale = np.array([0.00369204697], dtype=np.float32)
x_zero_point = np.array([132], dtype=np.uint8)

w = np.array([0], dtype=np.uint8).reshape((1, 1, 1, 1))

w_scale = np.array([0.00172794575], dtype=np.float32)
w_zero_point = np.array([255], dtype=np.uint8)

y_scale = np.array([0.00162681262], dtype=np.float32)
y_zero_point = np.array([123], dtype=np.uint8)

output = np.array([[0, 81, 93, 230, 52, 87, 197],
[240, 196, 18, 160, 126, 255, 191],
[199, 13, 102, 34, 87, 243, 89],
[23, 77, 69, 60, 18, 93, 18],
[67, 216, 131, 178, 175, 153, 212],
[128, 25, 234, 172, 214, 215, 121],
[0, 101, 163, 114, 213, 107, 8], ], dtype=np.uint8).reshape((1, 1, 7, 7))

expect(node, inputs=[x, x_scale, x_zero_point, w, w_scale, w_zero_point, y_scale, y_zero_point], outputs=[output],
name='test_qlinearconv')
```

</details>


### <a name="QLinearMatMul"></a><a name="qlinearmatmul">**QLinearMatMul**</a>

Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html.
Expand Down Expand Up @@ -8177,6 +8315,76 @@ This version of the operator has been available since version 10 of the default
</dl>


#### Examples

<details>
<summary>qlinearmatmul</summary>

```python
node = onnx.helper.make_node('QLinearMatMul',
inputs=['a', 'a_scale', 'a_zero_point', 'b', 'b_scale', 'b_zero_point', 'y_scale', 'y_zero_point'],
outputs=['y'],)

#2D
a = np.array([[208, 236, 0, 238],
[3, 214, 255, 29], ], dtype=np.uint8)

a_scale = np.array([0.0066], dtype=np.float32)
a_zero_point = np.array([113], dtype=np.uint8)

b = np.array([[152, 51, 244],
[60, 26, 255],
[0, 127, 246],
[127, 254, 247]], dtype=np.uint8)

b_scale = np.array([0.00705], dtype=np.float32)
b_zero_point = np.array([114], dtype=np.uint8)

y_scale = np.array([0.0107], dtype=np.float32)
y_zero_point = np.array([118], dtype=np.uint8)

output = np.array([[168, 115, 255],
[1, 66, 151], ], dtype=np.uint8)

expect(node, inputs=[a, a_scale, a_zero_point, b, b_scale, b_zero_point, y_scale, y_zero_point], outputs=[output],
name='test_qlinearmatmul_2D')

#3D
a = np.array([[[208, 236, 0, 238],
[3, 214, 255, 29]],
[[208, 236, 0, 238],
[3, 214, 255, 29]]], dtype=np.uint8)

a_scale = np.array([0.0066], dtype=np.float32)
a_zero_point = np.array([113], dtype=np.uint8)

b = np.array([[[152, 51, 244],
[60, 26, 255],
[0, 127, 246],
[127, 254, 247]],
[[152, 51, 244],
[60, 26, 255],
[0, 127, 246],
[127, 254, 247]]], dtype=np.uint8)

b_scale = np.array([0.00705], dtype=np.float32)
b_zero_point = np.array([114], dtype=np.uint8)

y_scale = np.array([0.0107], dtype=np.float32)
y_zero_point = np.array([118], dtype=np.uint8)

output = np.array([[[168, 115, 255],
[1, 66, 151]],
[[168, 115, 255],
[1, 66, 151]]], dtype=np.uint8)

expect(node, inputs=[a, a_scale, a_zero_point, b, b_scale, b_zero_point, y_scale, y_zero_point], outputs=[output],
name='test_qlinearmatmul_3D')
```

</details>


### <a name="QuantizeLinear"></a><a name="quantizelinear">**QuantizeLinear**</a>

The linear per-tensor/layer quantization operator. It consumes a high precision tensor, a scale, a zero point to compute the low precision / quantized tensor.
Expand Down Expand Up @@ -8215,6 +8423,28 @@ This version of the operator has been available since version 10 of the default
</dl>


#### Examples

<details>
<summary>quantizelinear</summary>

```python
node = onnx.helper.make_node('QuantizeLinear',
inputs=['x', 'y_scale', 'y_zero_point'],
outputs=['y'],)

x = np.array([0, 2, 3, 1000, -254, -1000]).astype(np.float32)
y_scale = np.array([2], dtype=np.float32)
y_zero_point = np.array([128], dtype=np.uint8)
y = np.array([128, 129, 130, 255, 1, 0]).astype(np.uint8)

expect(node, inputs=[x, y_scale, y_zero_point], outputs=[y],
name='test_quantizelinear')
```

</details>


### <a name="RNN"></a><a name="rnn">**RNN**</a>

Computes an one-layer simple RNN. This operator is usually supported
Expand Down
Loading