Skip to content

oleksiy-pototskyy/python-for-mlops

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python for MLOps - Educational Course

Comprehensive Python programming course designed specifically for MLOps engineers and practitioners.

🎯 Course Overview

This repository contains practical Python examples and exercises covering essential programming concepts for Machine Learning Operations (MLOps). Each module builds upon previous knowledge to create a solid foundation for MLOps development.

Course URL: https://nubes.academy/python-for-mlops-mlops-specialization/

📚 Course Structure

Core Python Fundamentals

  • 01_core_python_basics/ - Values, types, strings, collections, naming conventions
  • 02_control_flow_and_logic/ - Operators, conditionals, loops, comprehensions
  • 03_functions/ - Function definition, lambda functions
  • 04_typing_and_linting/ - Type hints and code quality

Advanced Python Concepts

  • 05_text_processing/ - Pattern matching, regular expressions
  • 06_modules_and_packages/ - Code organization, imports, third-party packages
  • 07_classes_and_oop/ - Object-oriented programming concepts
  • 08_exceptions_and_error_handling/ - Robust error handling patterns

System Integration

  • 09_file_and_os_operations/ - File I/O, paths, environment variables, subprocess
  • 10_logging/ - Structured logging for production systems
  • 11_serialization/ - Data persistence with JSON, YAML, Pickle

Quality Assurance

  • 12_testing/ - Comprehensive testing strategies with pytest and unittest

Data Processing

  • 13_numeric_data_with_numpy/ - Numerical computing fundamentals
  • 14_data_analysis_with_pandas/ - Data manipulation and analysis
  • 15_external_libraries/ - Configuration management and HTTP clients

🚀 Getting Started

Prerequisites

  • Python 3.8 or higher
  • Basic programming knowledge

Installation

# Clone the repository
git clone <repository-url>
cd python-for-mlops

# Install dependencies
pip install -r requirements.txt

Running Examples

# Navigate to any module
cd 01_core_python_basics

# Run individual examples
python 01_values_and_types.py

# Run tests (where available)
pytest

🎓 Learning Path

  1. Start with Core Basics - Master Python fundamentals
  2. Practice Control Flow - Understand program logic and iteration
  3. Learn Functions - Write reusable, modular code
  4. Add Type Safety - Implement type hints and linting
  5. Process Text Data - Handle string operations and patterns
  6. Organize Code - Structure projects with modules and packages
  7. Apply OOP - Use classes for complex data structures
  8. Handle Errors - Implement robust error handling
  9. Integrate Systems - Work with files, OS, and external processes
  10. Add Logging - Implement production-ready logging
  11. Persist Data - Serialize and deserialize data structures
  12. Test Everything - Write comprehensive tests
  13. Process Numbers - Use NumPy for numerical computing
  14. Analyze Data - Leverage Pandas for data manipulation
  15. Use Libraries - Integrate external tools and services

🛠 MLOps Focus Areas

This course emphasizes Python skills specifically relevant to MLOps:

  • Data Pipeline Development - Processing and transforming ML datasets
  • Model Deployment - Serving models in production environments
  • Configuration Management - Managing ML experiment parameters
  • Error Handling - Building robust ML systems
  • Testing - Ensuring ML code quality and reliability
  • Monitoring - Logging and observability for ML systems
  • API Integration - Connecting ML services and data sources

📖 Additional Resources

🤝 Contributing

This is an educational repository. For course-related questions or feedback, please refer to the course platform.

📄 License

Educational content for the MLOps Specialization Course.


Happy Learning! 🐍✨