A lightweight, feedback-driven learning system for AI-assisted development. Close the loop between human feedback and AI code generation quality through systematic pattern recognition and guideline evolution.
Transform human feedback into actionable patterns that improve AI assistance over time. Instead of repeating the same mistakes, your AI assistant learns from corrections and applies insights to future generations.
Human Feedback β Pattern Extraction β Guideline Updates β Better AI Generations
β β
ββ Effect Tracking β Apply in Practice β Confidence Updates β Success Tracking ββ
# Clone and setup
git clone <your-repo>
cd learning-system
# Initialize local database
sqlite3 metrics.sqlite < schema.sql
# Verify setup
sqlite3 metrics.sqlite "SELECT 'Setup complete!' as status;"# Example: AI generated code that needed correction
sqlite3 metrics.sqlite "
INSERT INTO feedback_sessions (
feedback_type, human_rating, scenario, file_path,
feedback_text, correction_provided, correction_code
) VALUES (
'failure', 4, 'controller-logic', 'app/Controllers/UserController.php',
'Controller contains business logic that should be in service layer',
1, 'Move calculation to UserService; inject into controller'
);"# Generate insights
sqlite3 metrics.sqlite < queries.sql
# View learning curve
sqlite3 metrics.sqlite "SELECT * FROM learning_curve;"
# Check pattern effectiveness
sqlite3 metrics.sqlite "SELECT * FROM pattern_effectiveness;"- Success: AI generated exactly what you needed
- Failure: Significant corrections required
- Partial: Mostly correct with minor adjustments
- Suggestion: Ideas for improvement
- P0 (Critical): β₯2 failures in 7 days, avg rating β€5
- P1 (High): β₯3 issues in 14 days, avg rating β€6 OR correction rate β₯50%
- P2 (Medium): β₯2 issues in 30 days, avg rating β€7
- P3 (Low): Everything else
- Architectural: Structure and design decisions
- Syntax: Language-specific formatting and conventions
- Business Logic: Domain-specific rules and calculations
- UI/UX: User interface and experience patterns
- Needs Analysis: Requirements understanding gaps
feedback_sessions: Records all human feedback
feedback_type: success|failure|partial|suggestionhuman_rating: 1-10 satisfaction scorescenario: Context category (e.g., 'api-design', 'data-validation')correction_code: How you fixed the AI's output
learned_patterns: Extracted patterns from feedback
trigger_conditions: When this pattern applies (JSON)symptom_description: What went wrongsolution_template: How to fix itconfidence_score: 0.0-1.0 reliabilitysuccess_count/application_count: Track effectiveness
learning_curve: Daily progress metrics
SELECT * FROM learning_curve WHERE date >= date('now', '-30 days');pattern_effectiveness: Success rates by category
SELECT * FROM pattern_effectiveness ORDER BY success_rate DESC;# Frontend component issue
sqlite3 metrics.sqlite "
INSERT INTO feedback_sessions (feedback_type, human_rating, scenario, feedback_text, correction_code)
VALUES ('partial', 6, 'react-component', 'Missing error boundary wrapper', 'Wrap component with <ErrorBoundary>');"# Backend validation issue
sqlite3 metrics.sqlite "
INSERT INTO feedback_sessions (feedback_type, human_rating, scenario, feedback_text, correction_code)
VALUES ('failure', 3, 'input-validation', 'No request validation in controller', 'Add FormRequest class with validation rules');"# Algorithm optimization
sqlite3 metrics.sqlite "
INSERT INTO feedback_sessions (feedback_type, human_rating, scenario, feedback_text, correction_code)
VALUES ('suggestion', 8, 'performance', 'Could use more efficient sorting algorithm', 'Replace bubble sort with quicksort for large datasets');"As you work with AI assistance, rate outputs 1-10 and note corrections:
# Quick feedback entry
./scripts/add_feedback.sh "failure" 4 "database-query" "Missing JOIN clause" "Add LEFT JOIN users table"# Find critical issues needing attention
sqlite3 metrics.sqlite < queries.sql | jq '.[] | select(.rank == "P0")'Review and approve AI-suggested patterns:
# Check unprocessed feedback with corrections
sqlite3 metrics.sqlite "
SELECT scenario, feedback_text, correction_code
FROM feedback_sessions
WHERE processed = 0 AND correction_provided = 1
ORDER BY human_rating ASC
LIMIT 5;"# Generate daily report
mkdir -p reports/daily
sqlite3 metrics.sqlite < queries.sql > "reports/daily/$(date +%F).json"-- Extend pattern categories
INSERT INTO learned_patterns (pattern_category, trigger_conditions, symptom_description, solution_template)
VALUES ('security', '{"contains": ["password", "auth"]}', 'Insecure authentication', 'Use bcrypt for password hashing');-- Find patterns in specific scenarios
SELECT scenario, COUNT(*) as frequency, AVG(human_rating) as avg_rating
FROM feedback_sessions
WHERE scenario LIKE '%api%'
GROUP BY scenario
ORDER BY frequency DESC;# Import from CSV
sqlite3 metrics.sqlite ".mode csv" ".import feedback_export.csv feedback_sessions"learning-system/
βββ README.md # This file
βββ schema.sql # Database initialization
βββ queries.sql # Analysis queries
βββ patterns.md # Human-readable patterns
βββ evolution.log # Guideline change history
βββ reports/ # Generated insights (gitignored)
β βββ daily/
β βββ weekly/
β βββ monthly/
βββ scripts/ # Helper utilities
β βββ add_feedback.sh
β βββ daily_analysis.sh
β βββ export_patterns.py
βββ examples/ # Usage examples
βββ web_development/
βββ data_science/
βββ mobile_app/
- Local Only: SQLite database stays on your machine (add
metrics.sqliteto.gitignore) - Sensitive Data: Avoid storing secrets in
feedback_textorcorrection_code - Sharing: Only commit human-readable summaries (
patterns.md,reports/*.json)
- Core feedback collection
- Pattern extraction
- Priority ranking
- Daily analytics
- Web dashboard for visualization
- Automated pattern suggestions
- Integration with popular IDEs
- Slack/Discord notifications
- Multi-project aggregation
- Team collaboration features
- Machine learning pattern detection
- API for external tools
- Fork the repository
- Create a feature branch
- Test with your own projects
- Submit pull request with examples
We welcome usage examples from different domains:
- Add to
examples/<domain>/ - Include sample data and queries
- Document domain-specific patterns
MIT License - see LICENSE file for details.
- Issues: GitHub Issues for bugs and feature requests
- Discussions: GitHub Discussions for usage questions
- Documentation: Wiki for advanced usage patterns
Transform your AI assistance from reactive to proactive. Start learning from feedback today!