-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
202 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
|
||
pip install numpy matplotlib | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from scipy.linalg import eigh | ||
|
||
def form_stiffness_mass_timoshenko_beam(GDof, numberElements, elementNodes, numberNodes, xx, C, P, rho, I, thickness): | ||
stiffness = np.zeros((GDof, GDof)) | ||
mass = np.zeros((GDof, GDof)) | ||
force = np.zeros(GDof) | ||
|
||
gauss_locations_bending = [0.577350269189626, -0.577350269189626] | ||
gauss_weights_bending = [1, 1] | ||
|
||
for e in range(numberElements): | ||
indices = elementNodes[e, :] | ||
elementDof = np.concatenate([indices, indices + numberNodes]) | ||
length_element = xx[indices[1]] - xx[indices[0]] | ||
detJacobian = length_element / 2 | ||
invJacobian = 1.0 / detJacobian | ||
|
||
for q in range(len(gauss_weights_bending)): | ||
pt = gauss_locations_bending[q] | ||
shape, naturalDerivatives = shape_function_L2(pt) | ||
Xderivatives = naturalDerivatives * invJacobian | ||
|
||
B = np.zeros((2, 4)) | ||
B[0, 2:] = Xderivatives | ||
|
||
stiffness[np.ix_(elementDof, elementDof)] += B.T @ (C[0, 0] * B) * gauss_weights_bending[q] * detJacobian | ||
force[indices] += shape * P * gauss_weights_bending[q] * detJacobian | ||
|
||
# Mass matrix contributions | ||
N = np.zeros((4, 4)) | ||
N[:2, :2] = np.outer(shape, shape) | ||
N[2:, 2:] = np.outer(shape, shape) | ||
mass[np.ix_(elementDof, elementDof)] += rho * A * N * gauss_weights_bending[q] * detJacobian | ||
|
||
gauss_location_shear = 0.0 | ||
gauss_weight_shear = 2.0 | ||
|
||
for e in range(numberElements): | ||
indices = elementNodes[e, :] | ||
elementDof = np.concatenate([indices, indices + numberNodes]) | ||
length_element = xx[indices[1]] - xx[indices[0]] | ||
detJacobian = length_element / 2 | ||
|
||
pt = gauss_location_shear | ||
shape, naturalDerivatives = shape_function_L2(pt) | ||
Xderivatives = naturalDerivatives * invJacobian | ||
|
||
B = np.zeros((2, 4)) | ||
B[1, :2] = Xderivatives | ||
B[1, 2:] = shape | ||
|
||
stiffness[np.ix_(elementDof, elementDof)] += B.T @ (C[1, 1] * B) * gauss_weight_shear * detJacobian | ||
|
||
return stiffness, force, mass | ||
|
||
def shape_function_L2(xi): | ||
shape = np.array([(1 - xi) / 2, (1 + xi) / 2]) | ||
naturalDerivatives = np.array([-0.5, 0.5]) | ||
return shape, naturalDerivatives | ||
|
||
def solution(GDof, prescribedDof, stiffness, force): | ||
activeDof = np.setdiff1d(np.arange(GDof), prescribedDof) | ||
|
||
K_active = stiffness[np.ix_(activeDof, activeDof)] | ||
F_active = force[activeDof] | ||
|
||
U_active = np.linalg.solve(K_active, F_active) | ||
displacements = np.zeros(GDof) | ||
displacements[activeDof] = U_active | ||
|
||
return displacements | ||
|
||
def solution_modal(prescribedDof, K, M, num_modes): | ||
activeDof = np.setdiff1d(np.arange(len(K)), prescribedDof) | ||
|
||
K_active = K[np.ix_(activeDof, activeDof)] | ||
M_active = M[np.ix_(activeDof, activeDof)] | ||
|
||
eigvals, eigvecs = eigh(K_active, M_active, subset_by_index=[0, num_modes-1]) | ||
|
||
eigvals = np.sqrt(np.real(eigvals)) | ||
eigvecs_full = np.zeros((len(K), num_modes)) | ||
eigvecs_full[activeDof, :] = eigvecs[:, :num_modes] | ||
|
||
return eigvals[:num_modes], eigvecs_full | ||
|
||
def output_displacements_reactions(displacements, stiffness, GDof, prescribedDof): | ||
print("Displacements:") | ||
for i in range(GDof): | ||
print(f"{i + 1}: {displacements[i]}") | ||
|
||
F = stiffness @ displacements | ||
reactions = F[prescribedDof] | ||
print("Reactions:") | ||
for i, r in zip(prescribedDof, reactions): | ||
print(f"{i + 1}: {r}") | ||
def plot_displacements(nodeCoordinates, displacements): | ||
plt.figure() | ||
plt.plot(nodeCoordinates, displacements) | ||
plt.xlabel('Node') | ||
plt.ylabel('Displacement') | ||
plt.title('Displacement of nodes') | ||
plt.grid(True) | ||
plt.show() | ||
|
||
def plot_forces(nodeCoordinates, forces): | ||
plt.figure() | ||
plt.plot(nodeCoordinates, forces) | ||
plt.xlabel('Node') | ||
plt.ylabel('Force') | ||
plt.title('Forces at nodes') | ||
plt.grid(True) | ||
plt.show() | ||
|
||
def plot_mode_shapes(nodeCoordinates, mode_shapes, num_modes): | ||
plt.figure() | ||
for i in range(num_modes): | ||
plt.subplot(num_modes, 1, i + 1) | ||
plt.plot(nodeCoordinates, mode_shapes[:, i]) | ||
plt.grid(True) | ||
plt.ylabel(f'Mode {i + 1}') | ||
plt.xlabel('Node') | ||
plt.suptitle('Mode Shapes') | ||
plt.show() | ||
|
||
def get_boundary_conditions(boundary_type, numberNodes): | ||
if boundary_type == 'c-c': | ||
fixedNodeW = [0, numberNodes - 1] | ||
fixedNodeTX = fixedNodeW | ||
elif boundary_type == 'c-s': | ||
fixedNodeW = [0] | ||
fixedNodeTX = [0, numberNodes - 1] | ||
elif boundary_type == 's-s': | ||
fixedNodeW = [0, numberNodes - 1] | ||
fixedNodeTX = [] | ||
elif boundary_type == 'c-f': | ||
fixedNodeW = [0] | ||
fixedNodeTX = [0] | ||
else: | ||
raise ValueError("Invalid boundary condition type") | ||
prescribedDof = fixedNodeW + [node + numberNodes for node in fixedNodeTX] | ||
return prescribedDof | ||
|
||
# Constants | ||
E = 2.11e11 | ||
poisson = 0.30 | ||
rho = 7850 | ||
L = 1 | ||
b = 1 | ||
h = 0.1 | ||
I = b * h**3 / 12 | ||
kapa = 5 / 6 | ||
A = b * h | ||
P = -1 # Uniform pressure | ||
G = E / (2 * (1 + poisson)) | ||
# Constitutive matrix | ||
C = np.array([[E * I, 0], [0, kapa * h * G]]) | ||
# Mesh | ||
numberElements = 100 | ||
nodeCoordinates = np.linspace(0, L, numberElements + 1) | ||
elementNodes = np.vstack([np.arange(numberElements), np.arange(1, numberElements + 1)]).T | ||
|
||
# Generation of coordinates and connectivities | ||
numberNodes = len(nodeCoordinates) | ||
GDof = 2 * numberNodes | ||
|
||
# Compute stiffness matrix and force vector | ||
stiffness, force, mass = form_stiffness_mass_timoshenko_beam(GDof, numberElements, elementNodes, numberNodes, nodeCoordinates, C, P, rho, I, h) | ||
|
||
# Choose boundary conditions | ||
boundary_type = 'c-c' # Change this to 'c-c', 'c-s', 's-s', or 'c-f' for different boundary conditions | ||
prescribedDof = get_boundary_conditions(boundary_type, numberNodes) | ||
|
||
# Solution for static analysis | ||
displacements = solution(GDof, prescribedDof, stiffness, force) | ||
|
||
# Output displacements/reactions | ||
output_displacements_reactions(displacements, stiffness, GDof, prescribedDof) | ||
|
||
# Max displacement | ||
U = displacements[:numberNodes] | ||
max_displacement = np.min(U) | ||
print(f"Max displacement: {max_displacement}") | ||
# Plot displacements | ||
plot_displacements(nodeCoordinates, displacements[:numberNodes]) | ||
# Plot forces | ||
F = stiffness @ displacements | ||
plot_forces(nodeCoordinates, F[:numberNodes]) | ||
# Normal modes analysis | ||
num_modes = 8 | ||
eigenvalues, mode_shapes = solution_modal(prescribedDof, stiffness, mass, num_modes) | ||
# Print natural frequencies | ||
frequencies = eigenvalues / (2 * np.pi) | ||
print("Natural frequencies (Hz):") | ||
print(frequencies) | ||
# Plot mode shapes | ||
plot_mode_shapes(nodeCoordinates, mode_shapes[:numberNodes, :], num_modes) | ||
|