-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
import numpy as np | ||
import scipy.linalg | ||
import matplotlib.pyplot as plt | ||
|
||
def main(): | ||
ccc1 = ["#c1272d", "#0000a7", "#eecc16", "#008176", "b3b3b3"] | ||
|
||
E = 10e7 | ||
nu = 0.30 | ||
rho = 1 | ||
|
||
L = 1 | ||
b = 1 | ||
h = 0.001 | ||
I = b * h**3 / 12 | ||
kapa = 5 / 6 | ||
A = b * h | ||
|
||
G = E / 2 / (1 + nu) | ||
C = np.array([[E * I, 0], [0, kapa * h * G]]) | ||
|
||
N_elements_range = range(5, 102) | ||
N_modes = 5 | ||
|
||
D = np.zeros((len(N_elements_range), N_modes, 3)) | ||
|
||
for j, N_nodes in enumerate(N_elements_range): | ||
x_col = np.linspace(0, L, N_nodes) | ||
N_elements = N_nodes - 1 | ||
elementNodes = np.vstack((np.arange(1, N_nodes), np.arange(2, N_nodes + 1))).T | ||
|
||
P = -1 | ||
GDof = 2 * N_nodes | ||
|
||
K_Assembly, F_equiv, M_Assembly = formStiffnessMassTimoshenkoBeam(GDof, elementNodes, x_col, C, P, rho, I, h) | ||
|
||
prescribedDof = [ | ||
np.array([0, N_nodes - 1, N_nodes, 2 * N_nodes - 1]), | ||
np.array([0, N_nodes - 1]), | ||
np.array([0, N_nodes]) | ||
] | ||
|
||
for ii in range(len(prescribedDof)): | ||
D_vec = np.zeros(GDof) | ||
D_vec[prescribedDof[ii]] = 0 | ||
F_vec = np.zeros(GDof) | ||
|
||
D_vec, F_vec = solution(prescribedDof[ii], K_Assembly, D_vec, F_vec, F_equiv) | ||
print("Max displacement") | ||
print(np.min(D_vec[:N_nodes])) | ||
|
||
D_modeShapes, w_n = solutionModal(prescribedDof[ii], D_vec[prescribedDof[ii]], K_Assembly, M_Assembly, N_modes) | ||
D1 = w_n * L * L * np.sqrt(rho * A / (E * I)) | ||
D[j, :, ii] = np.sort(D1) | ||
|
||
plt.figure() | ||
plt.plot(N_elements_range, D[:, 0, 0], '-o', markevery=10, color=ccc1[0], linewidth=1.2, label='Clamped-Clamped') | ||
plt.plot(N_elements_range, D[:, 0, 1], '-.v', markevery=10, color=ccc1[2], linewidth=1.2, label='Simply supported-Simply supported') | ||
plt.plot(N_elements_range, D[:, 0, 2], '--s', markevery=10, color=ccc1[3], linewidth=1.2, label='Clamped-Free') | ||
plt.legend(loc='best') | ||
plt.grid(which='minor') | ||
plt.grid(which='major') | ||
plt.box(on=True) | ||
plt.xlabel('Number of Nodes') | ||
plt.ylabel('Frequency, [-]') | ||
plt.title('Frequency Convergence') | ||
plt.xlim([0, 100]) | ||
plt.show() | ||
|
||
def formStiffnessMassTimoshenkoBeam(GDof, elementNodes, x_col, C, P, rho, I, h): | ||
N_elements = elementNodes.shape[0] | ||
N_Nodes = len(x_col) | ||
|
||
K_Assembly = np.zeros((GDof, GDof)) | ||
M_Assembly = np.zeros((GDof, GDof)) | ||
F_equiv_local = np.zeros(GDof) | ||
|
||
gaussLocations = np.array([0.577350269189626, -0.577350269189626]) | ||
gaussWeights = np.ones(2) | ||
|
||
for iElement in range(N_elements): | ||
i_nodes = elementNodes[iElement] - 1 | ||
elementDof = np.hstack([i_nodes, i_nodes + N_Nodes]) | ||
indiceMass = i_nodes + N_Nodes | ||
ndof = len(i_nodes) | ||
Le = x_col[i_nodes[1]] - x_col[i_nodes[0]] | ||
detJacobian = Le / 2 | ||
invJacobian = 1 / detJacobian | ||
for q in range(len(gaussWeights)): | ||
pt = gaussLocations[q] | ||
shape, naturalDerivatives = shapeFunctionL2(pt) | ||
Xderivatives = naturalDerivatives * invJacobian | ||
|
||
B = np.zeros((2, 2 * ndof)) | ||
B[0, ndof:2 * ndof] = Xderivatives | ||
|
||
K_Assembly[np.ix_(elementDof, elementDof)] += B.T @ B * gaussWeights[q] * detJacobian * C[0, 0] | ||
F_equiv_local[i_nodes] += shape * P * detJacobian * gaussWeights[q] | ||
|
||
M_Assembly[np.ix_(indiceMass, indiceMass)] += shape[:, np.newaxis] @ shape[np.newaxis, :] * gaussWeights[q] * I * rho * detJacobian | ||
M_Assembly[np.ix_(i_nodes, i_nodes)] += shape[:, np.newaxis] @ shape[np.newaxis, :] * gaussWeights[q] * h * rho * detJacobian | ||
|
||
gaussLocations = np.array([0.0]) | ||
gaussWeights = np.array([2.0]) | ||
for iElement in range(N_elements): | ||
i_nodes = elementNodes[iElement] - 1 | ||
elementDof = np.hstack([i_nodes, i_nodes + N_Nodes]) | ||
ndof = len(i_nodes) | ||
Le = x_col[i_nodes[1]] - x_col[i_nodes[0]] | ||
detJacobian = Le / 2 | ||
invJacobian = 1 / detJacobian | ||
for q in range(len(gaussWeights)): | ||
pt = gaussLocations[q] | ||
shape, naturalDerivatives = shapeFunctionL2(pt) | ||
Xderivatives = naturalDerivatives * invJacobian | ||
|
||
B = np.zeros((2, 2 * ndof)) | ||
B[1, :ndof] = Xderivatives | ||
B[1, ndof:2 * ndof] = shape | ||
|
||
K_Assembly[np.ix_(elementDof, elementDof)] += B.T @ B * gaussWeights[q] * detJacobian * C[1, 1] | ||
|
||
return K_Assembly, F_equiv_local, M_Assembly | ||
|
||
def shapeFunctionL2(xi): | ||
shape = np.array([(1 - xi) / 2, (1 + xi) / 2]) | ||
naturalDerivatives = np.array([-1, 1]) / 2 | ||
return shape, naturalDerivatives | ||
|
||
def solution(prescribedDof, K_assembly, D_vec, F_vec, F_eq_vec=None): | ||
if F_eq_vec is None: | ||
F_eq_vec = np.zeros_like(F_vec) | ||
|
||
GDof = len(D_vec) | ||
freeDof = np.setdiff1d(np.arange(GDof), prescribedDof) | ||
|
||
D_vec[freeDof] = np.linalg.solve(K_assembly[np.ix_(freeDof, freeDof)], F_vec[freeDof] + F_eq_vec[freeDof]) | ||
|
||
nonZeroDof = np.union1d(freeDof, np.array([d for d in prescribedDof if D_vec[d] != 0], dtype=int)) | ||
|
||
F_vec[prescribedDof] = K_assembly[np.ix_(prescribedDof, nonZeroDof)] @ D_vec[nonZeroDof] - F_eq_vec[prescribedDof] | ||
return D_vec, F_vec | ||
|
||
def solutionModal(prescribedDofs, D_prescribed, K_assembly, M_assembly, N_modes): | ||
GDof = K_assembly.shape[0] | ||
freeDof = np.setdiff1d(np.arange(GDof), prescribedDofs) | ||
|
||
D_modeShape_cols = np.zeros((GDof, N_modes)) | ||
D_modeShape_cols[prescribedDofs, :] = D_prescribed[:, np.newaxis] | ||
|
||
eigvals, eigvecs = scipy.linalg.eigh(K_assembly[np.ix_(freeDof, freeDof)], M_assembly[np.ix_(freeDof, freeDof)]) | ||
w_n_vec = np.sqrt(eigvals[:N_modes]) | ||
D_modeShape_cols[freeDof, :] = eigvecs[:, :N_modes] | ||
|
||
return D_modeShape_cols, w_n_vec | ||
|
||
if __name__ == "__main__": | ||
main() |