Skip to content

nmsl-nthu/PCCArena

 
 

Repository files navigation

PCC Arena

Environments

Ubuntu 20.04

Prerequisites

  • git
  • gcc
  • g++
  • cmake
  • subversion
  • xvfb
  • libblas-dev
  • libatlas-base-dev
  • nvidia-cuda-toolkit
sudo apt install git gcc g++ cmake subversion xvfb libblas-dev libatlas-base-dev nvidia-cuda-toolkit -y
  • Ananconda 3
wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
sh Anaconda3-2020.11-Linux-x86_64.sh
source .bashrc

Quick Start

To download and set up PCC Arena, please type the following commands.

  • Step 1: Clone the github project.
git clone https://github.com/xtorker/PCCArena.git
  • Step 2: Change the current directory.
cd PCCArena
  • Step 3: Create the conda environment pcc_arena.
conda env create -f cfgs/conda_env/pcc_arena.yml
  • Step 4: Activate the environment pcc_arena.
conda activate pcc_arena
  • Step 5: Set up the environments.
python setup.py
  • Step 6: Grant executed permission.
chmod +x setup_env_ds.sh
  • Step 7: Run environment setup script.
./setup_env_ds.sh
tar xvf geocnn_v1_pretrained_models.tar -C algorithms/GeoCNNv1
tar -Jxvf geocnn_v2_pretrained_models.tar.xz -C algorithms/GeoCNNv2
  • Step 10: Run experiments in PCC Arena. We have two types of python files for experimenting. One is a short version for testing, and the other is a full version. The short version only runs one compression rate for each algorithm and doesn't run the algorithms which require lots of memory (e.g., GeoCNNv1 requires more than 50GB).
# Short version
python run_experiments_short.py
# Full version
python run_experiments.py
  • Step 11: Check the results (binaries, point cloud, metrics) in expereiments/{algorithm}/{rate}

Setup Demo Video

https://youtu.be/tIOUSJMDAUU

Add More PCC Algorithms

  1. Put the whole PCC algorithm project folder under algorithms/
  2. Write a specific wrapper for it and put it under algs_wrapper/
  3. Write a YAML file for configuring any coding parameters and rate control parameters, and put it under cfgs/algs/
  4. (Optional) If the PCC algorithm needs specific virtual environment, make sure to indicate the python path in the YAML file (Step 3).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 97.7%
  • Shell 2.3%