Skip to content

CiteMind is a web platform that processes academic papers, builds citation networks, identifies research trends, highlights seminal works, and provides intelligent query answering using embeddings and vector databases.

nishantraj278/CiteMind

Repository files navigation

🧠 CiteMind

CiteMind Logo

AI-Powered Research Discovery Platform

Next.js TypeScript MongoDB Pinecone Tailwind CSS


πŸš€ Overview

CiteMind is a modern AI-powered research discovery platform that revolutionizes how researchers explore, analyze, and connect scientific papers. Built with cutting-edge technologies, it provides intelligent search capabilities, citation network visualization, trend analysis, and AI-powered research synthesis.

✨ Key Features

  • πŸ” AI-Powered Search: Semantic search with natural language processing
  • πŸ•ΈοΈ Citation Network Visualization: Interactive network graphs showing paper relationships
  • πŸ“ˆ Research Trends Analysis: Dynamic charts revealing emerging research patterns
  • πŸ† Seminal Papers Discovery: Curated lists of influential research papers
  • πŸ€– AI Research Synthesis: Automated analysis and insights generation
  • 🎨 Modern UI/UX: Glassmorphism design with smooth animations

πŸ› οΈ Tech Stack

Frontend

  • Next.js 15.4.6 - React framework with App Router
  • TypeScript 5.0 - Type-safe development
  • Tailwind CSS 4.0 - Modern utility-first CSS framework
  • Chart.js 4.5.0 - Interactive data visualization
  • D3.js 7.9.0 - Advanced data-driven visualizations

Backend & AI

  • MongoDB 6.18.0 - NoSQL database for paper storage
  • Pinecone - Vector database for semantic search
  • HuggingFace Inference - AI model integration
  • Node.js APIs - RESTful backend services

Visualization

  • Force-Graph - Network visualization engine
  • Vis.js - Advanced network and timeline visualization
  • Custom SVG - Citation network rendering

πŸ—οΈ Project Structure

citemind/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ app/                    # Next.js App Router pages
β”‚   β”‚   β”œβ”€β”€ api/               # API routes
β”‚   β”‚   β”‚   β”œβ”€β”€ query/         # Search and AI analysis
β”‚   β”‚   β”‚   β”œβ”€β”€ papers/        # Paper management
β”‚   β”‚   β”‚   β”œβ”€β”€ trends/        # Trend analysis
β”‚   β”‚   β”‚   └── seminal-papers/ # Top papers endpoint
β”‚   β”‚   β”œβ”€β”€ citation/          # Citation network page
β”‚   β”‚   β”œβ”€β”€ trends/            # Research trends page
β”‚   β”‚   β”œβ”€β”€ seminal-papers/    # Top papers page
β”‚   β”‚   β”œβ”€β”€ loading.tsx        # Global loading component
β”‚   β”‚   β”œβ”€β”€ layout.tsx         # Root layout
β”‚   β”‚   └── page.tsx           # Homepage
β”‚   └── components/            # Reusable UI components
β”‚       β”œβ”€β”€ Navbar.tsx         # Navigation component
β”‚       β”œβ”€β”€ PaperItems.tsx     # Paper display cards
β”‚       β”œβ”€β”€ LoadingScreen.tsx  # Custom loading screen
β”‚       └── ClientWrapper.tsx  # Client-side wrapper
β”œβ”€β”€ public/                    # Static assets
└── configuration files

πŸš€ Getting Started

Prerequisites

  • Node.js (v18 or higher)
  • npm or yarn
  • MongoDB database
  • Pinecone account (for vector search)
  • HuggingFace API access

Installation

  1. Clone the repository

    git clone https://github.com/NishantRaj278/CiteMind.git
    cd CiteMind
  2. Install dependencies

    npm install
    # or
    yarn install
  3. Environment Configuration

    Create a .env.local file in the root directory:

    # MongoDB Configuration
    MONGODB_URI=your_mongodb_connection_string
    
    # Pinecone Configuration
    PINECONE_API_KEY=your_pinecone_api_key
    PINECONE_INDEX_NAME=your_index_name
    
    # HuggingFace Configuration
    HUGGINGFACE_API_KEY=your_huggingface_api_key
  4. Run the development server

    npm run dev
    # or
    yarn dev
  5. Open your browser

    Navigate to http://localhost:3000


πŸ“– API Documentation

Core Endpoints

Endpoint Method Description
/api/query POST Search papers and get AI analysis
/api/papers GET Retrieve all papers
/api/load-papers POST Load sample papers into database
/api/trends GET Get research trend analysis
/api/seminal-papers GET Get top influential papers
/api/citation-network GET Get citation relationships

Example API Usage

Search with AI Analysis:

const response = await fetch("/api/query", {
  method: "POST",
  headers: { "Content-Type": "application/json" },
  body: JSON.stringify({
    query: "machine learning in healthcare",
    includeAnalysis: true,
  }),
});

🎨 Design System

CiteMind features a modern Glassmorphism design system with:

  • Color Palette: Blue to purple gradients (#2563eb β†’ #7c3aed)
  • Typography: Montserrat font family with multiple weights
  • Components: Backdrop blur effects, gradient backgrounds, smooth animations
  • Responsive: Mobile-first design approach
  • Accessibility: WCAG 2.1 AA compliant

πŸ”§ Configuration

Database Setup

  1. MongoDB: Create a database for storing research papers
  2. Pinecone: Set up a vector index for semantic search
  3. Collections: The app will automatically create necessary collections

AI Models

The platform uses HuggingFace models for:

  • Text Embedding: Semantic search capabilities
  • Text Summarization: Research synthesis
  • Analysis Generation: Automated insights

πŸ“Š Features Deep Dive

πŸ” AI-Powered Search

  • Semantic similarity search using vector embeddings
  • Natural language query processing
  • Real-time result filtering and ranking
  • AI-generated research synthesis

πŸ•ΈοΈ Citation Network

  • Interactive force-directed graph visualization
  • Node clustering and relationship mapping
  • Hover interactions and detailed paper information
  • Export capabilities for further analysis

πŸ“ˆ Trends Analysis

  • Temporal analysis of research patterns
  • Dynamic chart generation with Chart.js
  • Publication trends over time
  • Topic emergence tracking

πŸ† Seminal Papers

  • Citation-based ranking algorithm
  • Curated lists of influential research
  • Author impact analysis
  • Cross-disciplinary connections

🀝 Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open a Pull Request

Development Guidelines

  • Follow TypeScript best practices
  • Use ESLint and Prettier for code formatting
  • Write meaningful commit messages
  • Add tests for new features
  • Update documentation as needed

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ‘¨β€πŸ’» Author

Nishant Raj


πŸ™ Acknowledgments

  • HuggingFace for AI model APIs
  • Pinecone for vector database services
  • MongoDB for data storage solutions
  • Next.js team for the amazing framework
  • Tailwind CSS for the utility-first approach

πŸ“ž Support

If you encounter any issues or have questions:

  1. Check the Issues page
  2. Create a new issue with detailed description
  3. Join our community discussions

Built with ❀️ for the research community

⭐ Star this repository if you find it helpful!

About

CiteMind is a web platform that processes academic papers, builds citation networks, identifies research trends, highlights seminal works, and provides intelligent query answering using embeddings and vector databases.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages