Skip to content

ENH: added interface for FSL's dual_regression #2057

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 8, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions nipype/interfaces/fsl/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -1815,6 +1815,72 @@ def _format_arg(self, name, spec, value):
return super(Cluster, self)._format_arg(name, spec, value)


class DualRegressionInputSpec(FSLCommandInputSpec):
in_files = InputMultiPath(File(exists=True), argstr="%s", mandatory=True,
position=-1, sep=" ",
desc="List all subjects' preprocessed, standard-space 4D datasets",)
group_IC_maps_4D = File(exists=True, argstr="%s", mandatory=True, position=1,
desc="4D image containing spatial IC maps (melodic_IC) from the "
"whole-group ICA analysis")
des_norm = traits.Bool(True, argstr="%i", position=2, usedefault=True,
desc="Whether to variance-normalise the timecourses used as the "
"stage-2 regressors; True is default and recommended")
one_sample_group_mean = traits.Bool(argstr="-1", position=3,
desc="perform 1-sample group-mean test instead of generic "
"permutation test")
design_file = File(exists=True, argstr="%s", position=3,
desc="Design matrix for final cross-subject modelling with "
"randomise")
con_file = File(exists=True, argstr="%s", position=4,
desc="Design contrasts for final cross-subject modelling with "
"randomise")
n_perm = traits.Int(argstr="%i", mandatory=True, position=5,
desc="Number of permutations for randomise; set to 1 for just raw "
"tstat output, set to 0 to not run randomise at all.")
out_dir = Directory("output", argstr="%s", usedefault=True, position=6,
desc="This directory will be created to hold all output and logfiles",
genfile=True)


class DualRegressionOutputSpec(TraitedSpec):
out_dir = Directory(exists=True)


class DualRegression(FSLCommand):
"""Wrapper Script for Dual Regression Workflow

Examples
--------

>>> dual_regression = DualRegression()
>>> dual_regression.inputs.in_files = ["functional.nii", "functional2.nii", "functional3.nii"]
>>> dual_regression.inputs.group_IC_maps_4D = "allFA.nii"
>>> dual_regression.inputs.des_norm = False
>>> dual_regression.inputs.one_sample_group_mean = True
>>> dual_regression.inputs.n_perm = 10
>>> dual_regression.inputs.out_dir = "my_output_directory"
>>> dual_regression.cmdline # doctest: +ALLOW_UNICODE
u'dual_regression allFA.nii 0 -1 10 my_output_directory functional.nii functional2.nii functional3.nii'
>>> dual_regression.run() # doctest: +SKIP

"""
input_spec = DualRegressionInputSpec
output_spec = DualRegressionOutputSpec
_cmd = 'dual_regression'

def _list_outputs(self):
outputs = self.output_spec().get()
if isdefined(self.inputs.out_dir):
outputs['out_dir'] = os.path.abspath(self.inputs.out_dir)
else:
outputs['out_dir'] = self._gen_filename("out_dir")
return outputs

def _gen_filename(self, name):
if name == "out_dir":
return os.getcwd()


class RandomiseInputSpec(FSLCommandInputSpec):
in_file = File(exists=True, desc='4D input file', argstr='-i %s',
position=0, mandatory=True)
Expand Down
64 changes: 64 additions & 0 deletions nipype/interfaces/fsl/tests/test_auto_DualRegression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT
from __future__ import unicode_literals
from ..model import DualRegression


def test_DualRegression_inputs():
input_map = dict(args=dict(argstr='%s',
),
con_file=dict(argstr='%s',
position=4,
),
des_norm=dict(argstr='%i',
position=2,
usedefault=True,
),
design_file=dict(argstr='%s',
position=3,
),
environ=dict(nohash=True,
usedefault=True,
),
group_IC_maps_4D=dict(argstr='%s',
mandatory=True,
position=1,
),
ignore_exception=dict(nohash=True,
usedefault=True,
),
in_files=dict(argstr='%s',
mandatory=True,
position=-1,
sep=' ',
),
n_perm=dict(argstr='%i',
mandatory=True,
position=5,
),
one_sample_group_mean=dict(argstr='-1',
position=3,
),
out_dir=dict(argstr='%s',
genfile=True,
position=6,
usedefault=True,
),
output_type=dict(),
terminal_output=dict(nohash=True,
),
)
inputs = DualRegression.input_spec()

for key, metadata in list(input_map.items()):
for metakey, value in list(metadata.items()):
assert getattr(inputs.traits()[key], metakey) == value


def test_DualRegression_outputs():
output_map = dict(out_dir=dict(),
)
outputs = DualRegression.output_spec()

for key, metadata in list(output_map.items()):
for metakey, value in list(metadata.items()):
assert getattr(outputs.traits()[key], metakey) == value