The Offical Code for Our Paper:Progressively Modality Freezing for Multi-Modal Entity Alignment, ACL2024.
We presented the Progressive Modality Freezing (PMF) model to advance Multi-Modal Entity Alignment.
By measuring and evaluating the relevance of various modalities, PMF progressively freezes features deemed less critical, thereby facilitating the integration and consistency of multi-modal features. Furthermore, we introduced a unified training objective tailored to foster a harmonious contrast between KGs and modalities.
Empirical evaluations on 9 sub-datasets affirm the superiority of PMF.
>> cd PMF-MMEA
>> pip install -r requirement.txt
Python (>=3.7 )
Pytorch (>= 1.7.0)
numpy (>= 1.19.2)
easydict (>= 1.10)
unidecode (>= 1.3.7)
tensorboard (>= 2.11.2)
- We assessed the effectiveness of our proposed method using three publicly available MMEA datasets: DBP15K, MMKG, Multi-OpenEA
- Download from GoogleDrive (1.3G) and unzip it to make those files satisfy the following file hierarchy:
ROOTs
├── data
│ └── MMKG
└── PMF-MMEA
MMKG details:
mmkg
├─DBP15K
│ ├─fr_en
│ │ ent_ids_1
│ │ ent_ids_2
│ │ ill_ent_ids
│ │ training_attrs_1
│ │ training_attrs_2
│ │ triples_1
│ │ triples_2
│ │
│ ├─ja_en
│ │ ent_ids_1
│ │ ent_ids_2
│ │ ill_ent_ids
│ │ training_attrs_1
│ │ training_attrs_2
│ │ triples_1
│ │ triples_2
│ │
│ ├─translated_ent_name
│ │ dbp_fr_en.json
│ │ dbp_ja_en.json
│ │ dbp_zh_en.json
│ │
│ └─zh_en
│ ent_ids_1
│ ent_ids_2
│ ill_ent_ids
│ training_attrs_1
│ training_attrs_2
│ triples_1
│ triples_2
│
├─FBDB15K
│ └─norm
│ ent_ids_1
│ ent_ids_2
│ ill_ent_ids
│ training_attrs_1
│ training_attrs_2
│ triples_1
│ triples_2
│
├─FBYG15K
│ └─norm
│ ent_ids_1
│ ent_ids_2
│ ill_ent_ids
│ training_attrs_1
│ training_attrs_2
│ triples_1
│ triples_2
│
├─OpenEA
│ ├─OEA_D_W_15K_V1
│ │ ent_ids_1
│ │ ent_ids_2
│ │ ill_ent_ids
│ │ rel_ids
│ │ training_attrs_1
│ │ training_attrs_2
│ │ triples_1
│ │ triples_2
│ │
│ ├─OEA_D_W_15K_V2
│ │ ent_ids_1
│ │ ent_ids_2
│ │ ill_ent_ids
│ │ rel_ids
│ │ training_attrs_1
│ │ training_attrs_2
│ │ triples_1
│ │ triples_2
│ │
│ ├─OEA_EN_DE_15K_V1
│ │ ent_ids_1
│ │ ent_ids_2
│ │ ill_ent_ids
│ │ rel_ids
│ │ training_attrs_1
│ │ training_attrs_2
│ │ triples_1
│ │ triples_2
│ │
│ └─OEA_EN_FR_15K_V1
│ ent_ids_1
│ ent_ids_2
│ ill_ent_ids
│ rel_ids
│ training_attrs_1
│ training_attrs_2
│ triples_1
│ triples_2
│
└─pkls
dbpedia_wikidata_15k_dense_GA_id_img_feature_dict.pkl
dbpedia_wikidata_15k_norm_GA_id_img_feature_dict.pkl
FBDB15K_id_img_feature_dict.pkl
FBYG15K_id_img_feature_dict.pkl
fr_en_GA_id_img_feature_dict.pkl
ja_en_GA_id_img_feature_dict.pkl
OEA_D_W_15K_V1_id_img_feature_dict.pkl
OEA_D_W_15K_V2_id_img_feature_dict.pkl
OEA_EN_DE_15K_V1_id_img_feature_dict.pkl
OEA_EN_FR_15K_V1_id_img_feature_dict.pkl
zh_en_GA_id_img_feature_dict.pkl
# DBP15K
>> bash run_dbp.sh
# MMKG
>> bash run_fb.sh
# Multi-OpenEA
>> bash run_oea.sh
Model performance report can be found in the file PMF-MMEA/results/report.csv
@inproceedings{huang2024progressively,
title={Progressively Modality Freezing for Multi-Modal Entity Alignment},
author={Huang, Yani and Zhang, Xuefeng and Zhang, Richong and Chen, Junfan and Kim, Jaein},
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={3477--3489},
year={2024}
}
This work was supported by CCSE, School of Computer Science and Engineering, Beihang University, Beijing, China. Our codes are modified based on MEAformer, and we also appreciate MCLEA, MSNEA, EVA, MMEA and many other related works for their open-source contributions.