Skip to content

nicexlab/parax-source

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ParaX

Overview

ParaX is a variation of MXNet that issues one instance processing a batch of samples for every core on a CPU, so as to alleviate memory bandwidth contention in DNN model training and inference on many-core CPUs.

Note: ParaX has been published in VLDB'21.

Install ParaX

git clone https://github.com/nicexlab/parax-source

cd parax-source

make -j

Run ParaX

export MXNET_ENGINE_TYPE=NaiveEngine;

python $MXNET_ROOT/tools/launch.py -n $number_of_instances -p $core_per_instance --launcher=local $command

$number_of_instances is the number of issued instances

$core_per_instance is the number of cores occupied by each instance

$command is the python program for DNN training or inference

When $number_of_instances is equal to the number of cores and using $core_per_instance=1, ParaX adopts the instance-per-core paradigm

Example

export MXNET_ENGINE_TYPE=NaiveEngine;

python $MXNET_ROOT /tools/launch.py -n 56 -p 1 --launcher=local python $MXNET_ROOT/example/image_classification/train_imagenet.py

This will train ImageNet with ParaX.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published