Sandboxed code execution for AI agents. Run untrusted code safely with resource limits and output capture.
pip install -r requirements.txtfrom agentsandbox import Sandbox
sandbox = Sandbox()
result = sandbox.execute("""
x = 5 + 3
print(f"Result: {x}")
""")
print(result.stdout) # "Result: 8"- Isolated execution environment
- Configurable timeout and memory limits
- Output capture (stdout, stderr)
- Support for multiple languages
- Docker-based isolation option
sandbox = Sandbox(
timeout: int = 30,
memory_limit: str = "256m",
use_docker: bool = False
)execute(code: str, language: str = "python") -> Result- Execute codeexecute_file(path: str) -> Result- Execute fileinstall_package(package: str)- Install package in sandbox
result.stdout # Standard output
result.stderr # Standard error
result.exit_code # Exit code
result.duration # Execution time
result.error # Exception if anysandbox = Sandbox(
timeout=60,
memory_limit="512m",
allowed_imports=["math", "json", "re"]
)sandbox = Sandbox(timeout=10)
result = sandbox.execute("""
import math
print(math.sqrt(16))
""")
if result.exit_code == 0:
print(result.stdout)
else:
print(f"Error: {result.stderr}")sandbox = Sandbox(use_docker=True)
result = sandbox.execute("""
import os
print(os.getcwd())
""")
# Runs in isolated containersandbox = Sandbox(timeout=5)
result = sandbox.execute("""
import time
time.sleep(100) # Will timeout
""")
if result.error:
print(f"Execution failed: {result.error}")MIT