This dashboard implements CI/CD for model deployment and monitors performance to address model drift and related issues. It provides an interactive interface for predicting customer term deposit subscriptions based on various features.
- Upload custom dataset via CSV
- Default test dataset available
- Automatic data validation
- Display processed dataset
- Column overview
- Data quality checks
- Automated prediction pipeline
- Pre-trained model integration
- Real-time processing
- Complete dataset display
- Prediction labels
- Confidence scores
Key metrics displayed:
- Age distribution
- Job categories
- Marital status
- Education levels
- Subscription probabilities
Detailed customer analysis including:
- Tier Classification: Based on subscription probability
- Customer Profile:
- Subscription probability score
- Demographic information
- Historical behavior
- Prediction Details:
- Subscription status
- Default history
- Previous interactions
marketing_campaign_ml_prediction_dashboard/
├── .streamlit/
│ └── config.toml
├── virtual_env/
├── README.md
├── app.py
├── best_xgb.pkl
├── clean_test_data.csv
└── requirements.txt
# Create virtual environment
python -m venv virtual_env
# Activate environment
source virtual_env/bin/activate # Unix
virtual_env\Scripts\activate # Windows
# Generate requirements
pip freeze > requirements.txt
# Best practices for file paths
import os
base_path = os.path.abspath(os.path.dirname(__file__))
data_path = os.path.join(base_path, 'data')
# .streamlit/config.toml
[theme]
base="light"
primaryColor="#ad200f"
backgroundColor="#f0f7f3"
secondaryBackgroundColor="#f5970c"
textColor="#000000"
font="sans serif"
# Performance optimization example
@st.cache
def load_data():
# Expensive data loading operation
return data
# Local testing
streamlit run app.py
- Monitor application logs
- Track performance metrics
- Debug deployment issues
- Implement error handling