Skip to content

Commit

Permalink
[CI] Expand test_guided_generate to test all backends (vllm-project#1…
Browse files Browse the repository at this point in the history
…1313)

Signed-off-by: mgoin <michael@neuralmagic.com>
  • Loading branch information
mgoin authored Dec 19, 2024
1 parent 17ca964 commit a30482f
Show file tree
Hide file tree
Showing 3 changed files with 129 additions and 51 deletions.
112 changes: 69 additions & 43 deletions tests/entrypoints/llm/test_guided_generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
from vllm.outputs import RequestOutput
from vllm.sampling_params import GuidedDecodingParams, SamplingParams

MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"]


@pytest.fixture(scope="module")
Expand All @@ -26,11 +27,13 @@ def llm():


@pytest.mark.skip_global_cleanup
def test_guided_regex(sample_regex, llm):
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(regex=sample_regex))
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_regex(sample_regex, llm, guided_decoding_backend: str):
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(
regex=sample_regex,
backend=guided_decoding_backend))
outputs = llm.generate(prompts=[
f"Give an example IPv4 address with this regex: {sample_regex}"
] * 2,
Expand All @@ -50,11 +53,14 @@ def test_guided_regex(sample_regex, llm):


@pytest.mark.skip_global_cleanup
def test_guided_json_completion(sample_json_schema, llm):
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=sample_json_schema))
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_json_completion(sample_json_schema, llm,
guided_decoding_backend: str):
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=sample_json_schema,
backend=guided_decoding_backend))
outputs = llm.generate(prompts=[
f"Give an example JSON for an employee profile "
f"that fits this schema: {sample_json_schema}"
Expand All @@ -77,11 +83,14 @@ def test_guided_json_completion(sample_json_schema, llm):


@pytest.mark.skip_global_cleanup
def test_guided_complex_json_completion(sample_complex_json_schema, llm):
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(json=sample_complex_json_schema))
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_complex_json_completion(sample_complex_json_schema, llm,
guided_decoding_backend: str):
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=sample_complex_json_schema,
backend=guided_decoding_backend))
outputs = llm.generate(prompts=[
f"Give an example JSON for an assignment grade "
f"that fits this schema: {sample_complex_json_schema}"
Expand All @@ -105,11 +114,14 @@ def test_guided_complex_json_completion(sample_complex_json_schema, llm):


@pytest.mark.skip_global_cleanup
def test_guided_definition_json_completion(sample_definition_json_schema, llm):
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_definition_json_completion(sample_definition_json_schema, llm,
guided_decoding_backend: str):
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
json=sample_definition_json_schema))
json=sample_definition_json_schema,
backend=guided_decoding_backend))
outputs = llm.generate(prompts=[
f"Give an example JSON for solving 8x + 7 = -23 "
f"that fits this schema: {sample_definition_json_schema}"
Expand All @@ -133,11 +145,14 @@ def test_guided_definition_json_completion(sample_definition_json_schema, llm):


@pytest.mark.skip_global_cleanup
def test_guided_choice_completion(sample_guided_choice, llm):
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(choice=sample_guided_choice))
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_choice_completion(sample_guided_choice, llm,
guided_decoding_backend: str):
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
guided_decoding=GuidedDecodingParams(
choice=sample_guided_choice,
backend=guided_decoding_backend))
outputs = llm.generate(
prompts="The best language for type-safe systems programming is ",
sampling_params=sampling_params,
Expand All @@ -156,13 +171,20 @@ def test_guided_choice_completion(sample_guided_choice, llm):


@pytest.mark.skip_global_cleanup
def test_guided_grammar(sample_sql_statements, llm):

sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(grammar=sample_sql_statements))
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_grammar(sample_sql_statements, llm,
guided_decoding_backend: str):
if guided_decoding_backend == "outlines":
pytest.skip("Outlines backend fails in this test case with:\n"
"AttributeError: Error in model execution: 'ParserConf' "
"object has no attribute 'deterministic'")

sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=1000,
guided_decoding=GuidedDecodingParams(
grammar=sample_sql_statements,
backend=guided_decoding_backend))
outputs = llm.generate(
prompts=("Generate a sql state that select col_1 from "
"table_1 where it is equals to 1"),
Expand Down Expand Up @@ -218,15 +240,18 @@ def test_validation_against_both_guided_decoding_options(sample_regex, llm):


@pytest.mark.skip_global_cleanup
def test_guided_json_object(llm):
sampling_params = SamplingParams(
temperature=1.0,
max_tokens=100,
guided_decoding=GuidedDecodingParams(json_object=True))
@pytest.mark.parametrize("guided_decoding_backend", GUIDED_DECODING_BACKENDS)
def test_guided_json_object(llm, guided_decoding_backend: str):
sampling_params = SamplingParams(temperature=1.0,
max_tokens=100,
n=2,
guided_decoding=GuidedDecodingParams(
json_object=True,
backend=guided_decoding_backend))

outputs = llm.generate(
prompts=("Generate a JSON object describing a person with name "
"and age for John Smith who is 31 years old."),
prompts=("Generate a JSON object with curly braces for a person with "
"name and age fields for John Smith who is 31 years old."),
sampling_params=sampling_params,
use_tqdm=True)

Expand All @@ -235,10 +260,11 @@ def test_guided_json_object(llm):
assert output is not None
assert isinstance(output, RequestOutput)

generated_text = output.outputs[0].text
print(generated_text)
assert generated_text is not None
for i in range(2):
generated_text = output.outputs[i].text
print(generated_text)
assert generated_text is not None

# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
# Parse to verify it is valid JSON
parsed_json = json.loads(generated_text)
assert isinstance(parsed_json, dict)
4 changes: 2 additions & 2 deletions tests/model_executor/test_guided_processors.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from vllm.sampling_params import GuidedDecodingParams

MODEL_NAME = 'HuggingFaceH4/zephyr-7b-beta'
GUIDED_DECODING_BACKENDS = ["outlines", "lm-format-enforcer", "xgrammar"]


def test_guided_logits_processors(sample_regex, sample_json_schema):
Expand Down Expand Up @@ -42,8 +43,7 @@ def test_guided_logits_processors(sample_regex, sample_json_schema):


@pytest.mark.asyncio
@pytest.mark.parametrize("backend",
["outlines", "lm-format-enforcer", "xgrammar"])
@pytest.mark.parametrize("backend", GUIDED_DECODING_BACKENDS)
@pytest.mark.parametrize("is_local", [True, False])
async def test_guided_logits_processor_black_box(backend: str, is_local: bool,
sample_regex,
Expand Down
64 changes: 58 additions & 6 deletions vllm/model_executor/guided_decoding/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,15 +49,60 @@ def check_object(obj: dict) -> bool:
return check_object(schema)


def has_lmf_unsupported_json_features(schema: dict) -> bool:
"""
Check if JSON schema contains features unsupported
by lm_format_enforcer.
Known issues:
- Regex patterns:
"grade": {
"type": "string",
"pattern": "^[A-D]$" # Regex pattern
},
"""

def check_object(obj: dict) -> bool:
if not isinstance(obj, dict):
return False

# Check for pattern restrictions
if "pattern" in obj:
return True

# Recursively check all nested objects and arrays
for value in obj.values():
if isinstance(value, dict):
if check_object(value):
return True
elif isinstance(value, list):
for item in value:
if isinstance(item, dict) and check_object(item):
return True

return False

return check_object(schema)


def maybe_backend_fallback(
guided_params: GuidedDecodingParams) -> GuidedDecodingParams:
# lm-format-enforce doesn't support grammar, fallback to xgrammar
if (guided_params.backend == "lm-format-enforcer"
and guided_params.grammar is not None):
logger.warning(
"lm-format-enforcer does not support grammar guided decoding. "
"Falling back to use xgrammar instead.")
guided_params.backend = "xgrammar"
if guided_params.backend == "lm-format-enforcer":
if guided_params.grammar is not None:
logger.warning(
"lm-format-enforcer does not support grammar guided decoding. "
"Falling back to use xgrammar instead.")
guided_params.backend = "xgrammar"

# lm-format-enforcer doesn't support some JSON schema features
elif (guided_params.json is not None
and has_lmf_unsupported_json_features(guided_params.json)):
logger.warning(
"lm-format-enforcer does not support advanced JSON schema "
"features like patterns or numeric ranges. "
"Falling back to use outlines instead.")
guided_params.backend = "outlines"

if guided_params.backend == "xgrammar":
# xgrammar only has x86 wheels for linux, fallback to outlines
Expand All @@ -82,6 +127,13 @@ def maybe_backend_fallback(
"Falling back to use outlines instead.")
guided_params.backend = "outlines"

if (guided_params.backend == "outlines"
and guided_params.json_object is not None):
# outlines doesn't support json_object, fallback to xgrammar
logger.warning("outlines does not support json_object. "
"Falling back to use xgrammar instead.")
guided_params.backend = "xgrammar"

return guided_params


Expand Down

0 comments on commit a30482f

Please sign in to comment.