-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
instance segmentation task is added.
- Loading branch information
1 parent
2436441
commit 95f7d36
Showing
11 changed files
with
759 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import pycocotools.coco as coco | ||
from pycocotools.cocoeval import COCOeval | ||
import numpy as np | ||
import json | ||
import os | ||
|
||
import torch.utils.data as data | ||
|
||
class COCOSEG(data.Dataset): | ||
num_classes = 80 | ||
default_resolution = [512, 512] | ||
mean = np.array([0.40789654, 0.44719302, 0.47026115], | ||
dtype=np.float32).reshape(1, 1, 3) | ||
std = np.array([0.28863828, 0.27408164, 0.27809835], | ||
dtype=np.float32).reshape(1, 1, 3) | ||
|
||
def __init__(self, opt, split): | ||
super(COCOSEG, self).__init__() | ||
self.data_dir = os.path.join(opt.data_dir, opt.coco_dir) | ||
# self.img_dir = os.path.join(self.data_dir, '{}2017'.format(split)) | ||
self.img_dir = os.path.join(self.data_dir + '/images', '{}2017'.format(split)) | ||
if split == 'test': | ||
self.annot_path = os.path.join( | ||
self.data_dir, 'annotations', | ||
'image_info_test-dev2017.json').format(split) | ||
else: | ||
if opt.task == 'exdet': | ||
self.annot_path = os.path.join( | ||
self.data_dir, 'annotations', | ||
'instances_extreme_{}2017.json').format(split) | ||
else: | ||
self.annot_path = os.path.join( | ||
self.data_dir, 'annotations', | ||
'instances_{}2017.json').format(split) | ||
self.max_objs = 70 | ||
self.class_name = [ | ||
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', | ||
'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', | ||
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', | ||
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', | ||
'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', | ||
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', | ||
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', | ||
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', | ||
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', | ||
'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', | ||
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', | ||
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', | ||
'scissors', 'teddy bear', 'hair drier', 'toothbrush'] | ||
self._valid_ids = [ | ||
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, | ||
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, | ||
24, 25, 27, 28, 31, 32, 33, 34, 35, 36, | ||
37, 38, 39, 40, 41, 42, 43, 44, 46, 47, | ||
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, | ||
58, 59, 60, 61, 62, 63, 64, 65, 67, 70, | ||
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, | ||
82, 84, 85, 86, 87, 88, 89, 90] | ||
self.cat_ids = {v: i for i, v in enumerate(self._valid_ids)} | ||
self.voc_color = [(v // 32 * 64 + 64, (v // 8) % 4 * 64, v % 8 * 32) \ | ||
for v in range(1, self.num_classes + 1)] | ||
self._data_rng = np.random.RandomState(123) | ||
self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571], | ||
dtype=np.float32) | ||
self._eig_vec = np.array([ | ||
[-0.58752847, -0.69563484, 0.41340352], | ||
[-0.5832747, 0.00994535, -0.81221408], | ||
[-0.56089297, 0.71832671, 0.41158938] | ||
], dtype=np.float32) | ||
# self.mean = np.array([0.485, 0.456, 0.406], np.float32).reshape(1, 1, 3) | ||
# self.std = np.array([0.229, 0.224, 0.225], np.float32).reshape(1, 1, 3) | ||
|
||
self.split = split | ||
self.opt = opt | ||
|
||
print('==> initializing coco 2017 {} data.'.format(split)) | ||
self.coco = coco.COCO(self.annot_path) | ||
self.images = self.coco.getImgIds() | ||
self.num_samples = len(self.images) | ||
|
||
print('Loaded {} {} samples'.format(split, self.num_samples)) | ||
|
||
def _to_float(self, x): | ||
return float("{:.2f}".format(x)) | ||
|
||
def convert_eval_format(self, all_bboxes): | ||
# import pdb; pdb.set_trace() | ||
detections = [] | ||
for image_id in all_bboxes: | ||
for cls_ind in all_bboxes[image_id]: | ||
category_id = self._valid_ids[cls_ind - 1] | ||
if type(all_bboxes[image_id][cls_ind]) == dict: | ||
for id in range(len(all_bboxes[image_id][cls_ind]['boxs'])): | ||
bbox = all_bboxes[image_id][cls_ind]['boxs'][id] | ||
mask = all_bboxes[image_id][cls_ind]['pred_mask'][id] | ||
bbox[2] -= bbox[0] | ||
bbox[3] -= bbox[1] | ||
score = bbox[4] | ||
bbox_out = list(map(self._to_float, bbox[0:4])) | ||
|
||
detection = { | ||
"image_id": int(image_id), | ||
"category_id": int(category_id), | ||
"bbox": bbox_out, | ||
"score": float("{:.2f}".format(score)), | ||
"segmentation": mask | ||
} | ||
detections.append(detection) | ||
else: | ||
for bbox in all_bboxes[image_id][cls_ind]: | ||
bbox[2] -= bbox[0] | ||
bbox[3] -= bbox[1] | ||
score = bbox[4] | ||
bbox_out = list(map(self._to_float, bbox[0:4])) | ||
|
||
detection = { | ||
"image_id": int(image_id), | ||
"category_id": int(category_id), | ||
"bbox": bbox_out, | ||
"score": float("{:.2f}".format(score)) | ||
} | ||
if len(bbox) > 5: | ||
extreme_points = list(map(self._to_float, bbox[5:13])) | ||
detection["extreme_points"] = extreme_points | ||
detections.append(detection) | ||
return detections | ||
|
||
def __len__(self): | ||
return self.num_samples | ||
|
||
def save_results(self, results, save_dir): | ||
json.dump(self.convert_eval_format(results), | ||
open('{}/results.json'.format(save_dir), 'w')) | ||
|
||
def run_eval(self, results, save_dir): | ||
|
||
detections = self.convert_eval_format(results) | ||
coco_dets = self.coco.loadRes(detections) | ||
coco_eval = COCOeval(self.coco, coco_dets, "bbox") | ||
coco_eval.evaluate() | ||
coco_eval.accumulate() | ||
coco_eval.summarize() | ||
|
||
coco_eval = COCOeval(self.coco, coco_dets, "segm") | ||
coco_eval.evaluate() | ||
coco_eval.accumulate() | ||
coco_eval.summarize() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import torch.utils.data as data | ||
import numpy as np | ||
import torch | ||
import json | ||
import cv2 | ||
import os | ||
from src.lib.utils.image import flip, color_aug | ||
from src.lib.utils.image import get_affine_transform, affine_transform | ||
from src.lib.utils.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian | ||
from src.lib.utils.image import draw_dense_reg | ||
import math | ||
|
||
|
||
class CTSegDataset(data.Dataset): | ||
def _coco_box_to_bbox(self, box): | ||
bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]], | ||
dtype=np.float32) | ||
return bbox | ||
|
||
def _get_border(self, border, size): | ||
i = 1 | ||
while size - border // i <= border // i: | ||
i *= 2 | ||
return border // i | ||
|
||
def __getitem__(self, index): | ||
img_id = self.images[index] | ||
file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name'] | ||
img_path = os.path.join(self.img_dir, file_name) | ||
ann_ids = self.coco.getAnnIds(imgIds=[img_id]) | ||
anns = self.coco.loadAnns(ids=ann_ids) | ||
num_objs = min(len(anns), self.max_objs) | ||
|
||
img = cv2.imread(img_path) | ||
|
||
height, width = img.shape[0], img.shape[1] | ||
c = np.array([img.shape[1] / 2., img.shape[0] / 2.], dtype=np.float32) | ||
if self.opt.keep_res: | ||
input_h = (height | self.opt.pad) + 1 | ||
input_w = (width | self.opt.pad) + 1 | ||
s = np.array([input_w, input_h], dtype=np.float32) | ||
else: | ||
s = max(img.shape[0], img.shape[1]) * 1.0 | ||
input_h, input_w = self.opt.input_h, self.opt.input_w | ||
|
||
flipped = False | ||
if self.split == 'train': | ||
if not self.opt.not_rand_crop: | ||
s = s * np.random.choice(np.arange(0.6, 1.4, 0.1)) | ||
w_border = self._get_border(128, img.shape[1]) | ||
h_border = self._get_border(128, img.shape[0]) | ||
c[0] = np.random.randint(low=w_border, high=img.shape[1] - w_border) | ||
c[1] = np.random.randint(low=h_border, high=img.shape[0] - h_border) | ||
else: | ||
sf = self.opt.scale | ||
cf = self.opt.shift | ||
c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) | ||
c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf) | ||
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf) | ||
|
||
if np.random.random() < self.opt.flip: | ||
flipped = True | ||
img = img[:, ::-1, :] | ||
c[0] = width - c[0] - 1 | ||
|
||
trans_input = get_affine_transform( | ||
c, s, 0, [input_w, input_h]) | ||
inp = cv2.warpAffine(img, trans_input, | ||
(input_w, input_h), | ||
flags=cv2.INTER_LINEAR) | ||
inp = (inp.astype(np.float32) / 255.) | ||
if self.split == 'train' and not self.opt.no_color_aug: | ||
color_aug(self._data_rng, inp, self._eig_val, self._eig_vec) | ||
inp = (inp - self.mean) / self.std | ||
inp = inp.transpose(2, 0, 1) | ||
|
||
output_h = input_h // self.opt.down_ratio | ||
output_w = input_w // self.opt.down_ratio | ||
num_classes = self.num_classes | ||
trans_output = get_affine_transform(c, s, 0, [output_w, output_h]) | ||
|
||
hm = np.zeros((num_classes, output_h, output_w), dtype=np.float32) | ||
wh = np.zeros((self.max_objs, 2), dtype=np.float32) | ||
gtboxes = np.zeros((self.max_objs, 4), dtype=np.float32) | ||
dense_wh = np.zeros((2, output_h, output_w), dtype=np.float32) | ||
reg = np.zeros((self.max_objs, 2), dtype=np.float32) | ||
ind = np.zeros((self.max_objs), dtype=np.int64) | ||
reg_mask = np.zeros((self.max_objs), dtype=np.uint8) | ||
cat_spec_wh = np.zeros((self.max_objs, num_classes * 2), dtype=np.float32) | ||
cat_spec_mask = np.zeros((self.max_objs, num_classes), dtype=np.uint8) | ||
instance_masks = np.zeros((self.max_objs, output_h,output_w),dtype=np.float32) | ||
draw_gaussian = draw_msra_gaussian if self.opt.mse_loss else \ | ||
draw_umich_gaussian | ||
|
||
gt_det = [] | ||
|
||
for k in range(num_objs): | ||
|
||
ann = anns[k] | ||
instance_mask = self.coco.annToMask(ann) | ||
|
||
bbox = self._coco_box_to_bbox(ann['bbox']) | ||
cls_id = int(self.cat_ids[ann['category_id']]) | ||
if flipped: | ||
bbox[[0, 2]] = width - bbox[[2, 0]] - 1 | ||
instance_mask = instance_mask[:, ::-1] | ||
bbox[:2] = affine_transform(bbox[:2], trans_output) | ||
bbox[2:] = affine_transform(bbox[2:], trans_output) | ||
bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, output_w - 1) | ||
bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, output_h - 1) | ||
instance_mask= cv2.warpAffine(instance_mask, trans_output, | ||
(output_w, output_h), | ||
flags=cv2.INTER_LINEAR) | ||
instance_mask = instance_mask.astype(np.float32) | ||
|
||
h, w = bbox[3] - bbox[1], bbox[2] - bbox[0] | ||
if h > 0 and w > 0: | ||
radius = gaussian_radius((math.ceil(h), math.ceil(w))) | ||
radius = max(0, int(radius)) | ||
radius = self.opt.hm_gauss if self.opt.mse_loss else radius | ||
ct = np.array( | ||
[(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2], dtype=np.float32) | ||
ct_int = ct.astype(np.int32) | ||
draw_gaussian(hm[cls_id], ct_int, radius) | ||
gtboxes[k] = bbox | ||
wh[k] = 1. * w, 1. * h | ||
ind[k] = ct_int[1] * output_w + ct_int[0] | ||
reg[k] = ct - ct_int | ||
reg_mask[k] = 1 | ||
cat_spec_wh[k, cls_id * 2: cls_id * 2 + 2] = wh[k] | ||
cat_spec_mask[k, cls_id] = 1 | ||
instance_masks[k] = instance_mask | ||
if self.opt.dense_wh: | ||
draw_dense_reg(dense_wh, hm.max(axis=0), ct_int, wh[k], radius) | ||
gt_det.append([ct[0] - w / 2, ct[1] - h / 2, | ||
ct[0] + w / 2, ct[1] + h / 2, 1, cls_id]) | ||
|
||
ret = {'input': inp, 'hm': hm, 'reg_mask': reg_mask, 'ind': ind, 'wh': wh, | ||
"instance_mask":instance_masks, 'gtboxes':gtboxes, 'cat_spec_mask': cat_spec_mask} | ||
if self.opt.dense_wh: | ||
hm_a = hm.max(axis=0, keepdims=True) | ||
dense_wh_mask = np.concatenate([hm_a, hm_a], axis=0) | ||
ret.update({'dense_wh': dense_wh, 'dense_wh_mask': dense_wh_mask}) | ||
del ret['wh'] | ||
elif self.opt.cat_spec_wh: | ||
ret.update({'cat_spec_wh': cat_spec_wh, 'cat_spec_mask': cat_spec_mask}) | ||
del ret['wh'] | ||
if self.opt.reg_offset: | ||
ret.update({'reg': reg}) | ||
if self.opt.debug > 0 or not self.split == 'train': | ||
gt_det = np.array(gt_det, dtype=np.float32) if len(gt_det) > 0 else \ | ||
np.zeros((1, 6), dtype=np.float32) | ||
meta = {'c': c, 's': s, 'gt_det': gt_det, 'img_id': img_id} | ||
ret['meta'] = meta | ||
return ret |
Oops, something went wrong.