forked from neuralchen/SimSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Some related scripts for face swaping.
Some related scripts for face swaping.
- Loading branch information
Showing
2 changed files
with
156 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import cv2 | ||
import numpy as np | ||
# import time | ||
from util.add_watermark import watermark_image | ||
|
||
def reverse2wholeimage(swaped_imgs, mats, crop_size, oriimg, logoclass, save_path = '',): | ||
|
||
target_image_list = [] | ||
img_mask_list = [] | ||
for swaped_img, mat in zip(swaped_imgs, mats): | ||
swaped_img = swaped_img.cpu().detach().numpy().transpose((1, 2, 0)) | ||
img_white = np.full((crop_size,crop_size), 255, dtype=float) | ||
|
||
# inverse the Affine transformation matrix | ||
mat_rev = np.zeros([2,3]) | ||
div1 = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0] | ||
mat_rev[0][0] = mat[1][1]/div1 | ||
mat_rev[0][1] = -mat[0][1]/div1 | ||
mat_rev[0][2] = -(mat[0][2]*mat[1][1]-mat[0][1]*mat[1][2])/div1 | ||
div2 = mat[0][1]*mat[1][0]-mat[0][0]*mat[1][1] | ||
mat_rev[1][0] = mat[1][0]/div2 | ||
mat_rev[1][1] = -mat[0][0]/div2 | ||
mat_rev[1][2] = -(mat[0][2]*mat[1][0]-mat[0][0]*mat[1][2])/div2 | ||
|
||
orisize = (oriimg.shape[1], oriimg.shape[0]) | ||
target_image = cv2.warpAffine(swaped_img, mat_rev, orisize) | ||
img_white = cv2.warpAffine(img_white, mat_rev, orisize) | ||
|
||
|
||
img_white[img_white>20] =255 | ||
|
||
img_mask = img_white | ||
|
||
kernel = np.ones((10,10),np.uint8) | ||
img_mask = cv2.erode(img_mask,kernel,iterations = 1) | ||
|
||
img_mask /= 255 | ||
|
||
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) | ||
target_image = np.array(target_image, dtype=np.float)[..., ::-1] * 255 | ||
|
||
img_mask_list.append(img_mask) | ||
target_image_list.append(target_image) | ||
# target_image /= 255 | ||
# target_image = 0 | ||
img = np.array(oriimg, dtype=np.float) | ||
for img_mask, target_image in zip(img_mask_list, target_image_list): | ||
img = img_mask * target_image + (1-img_mask) * img | ||
|
||
final_img = logoclass.apply_frames(img.astype(np.uint8)) | ||
cv2.imwrite(save_path, final_img) | ||
|
||
# cv2.imwrite('E:\\lny\\SimSwap-main\\output\\img_div.jpg', img * 255) | ||
# cv2.imwrite('E:\\lny\\SimSwap-main\\output\\ori_img.jpg', oriimg) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import os | ||
import cv2 | ||
import glob | ||
import torch | ||
import shutil | ||
import numpy as np | ||
from tqdm import tqdm | ||
from util.reverse2original import reverse2wholeimage | ||
import moviepy.editor as mp | ||
from moviepy.editor import AudioFileClip, VideoFileClip | ||
from moviepy.video.io.ImageSequenceClip import ImageSequenceClip | ||
import time | ||
from util.add_watermark import watermark_image | ||
|
||
|
||
def _totensor(array): | ||
tensor = torch.from_numpy(array) | ||
img = tensor.transpose(0, 1).transpose(0, 2).contiguous() | ||
return img.float().div(255) | ||
|
||
def video_swap(video_path, id_vetor, swap_model, detect_model, save_path, temp_results_dir='./temp_results', crop_size=224): | ||
video_audio_clip = AudioFileClip(video_path) | ||
video = cv2.VideoCapture(video_path) | ||
logoclass = watermark_image('./simswaplogo/simswaplogo.png') | ||
ret = True | ||
frame_index = 0 | ||
|
||
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | ||
|
||
# video_WIDTH = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
|
||
# video_HEIGHT = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
|
||
fps = video.get(cv2.CAP_PROP_FPS) | ||
if os.path.exists(temp_results_dir): | ||
shutil.rmtree(temp_results_dir) | ||
|
||
# while ret: | ||
for frame_index in tqdm(range(frame_count)): | ||
ret, frame = video.read() | ||
if ret: | ||
detect_results = detect_model.get(frame,crop_size) | ||
|
||
if detect_results is not None: | ||
# print(frame_index) | ||
if not os.path.exists(temp_results_dir): | ||
os.mkdir(temp_results_dir) | ||
frame_align_crop_list = detect_results[0] | ||
frame_mat_list = detect_results[1] | ||
swap_result_list = [] | ||
|
||
for frame_align_crop in frame_align_crop_list: | ||
|
||
# BGR TO RGB | ||
# frame_align_crop_RGB = frame_align_crop[...,::-1] | ||
|
||
frame_align_crop_tenor = _totensor(cv2.cvtColor(frame_align_crop,cv2.COLOR_BGR2RGB))[None,...].cuda() | ||
|
||
swap_result = swap_model(None, frame_align_crop_tenor, id_vetor, None, True)[0] | ||
swap_result_list.append(swap_result) | ||
|
||
|
||
|
||
reverse2wholeimage(swap_result_list, frame_mat_list, crop_size, frame, logoclass,os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index))) | ||
|
||
else: | ||
if not os.path.exists(temp_results_dir): | ||
os.mkdir(temp_results_dir) | ||
cv2.imwrite(os.path.join(temp_results_dir, 'frame_{:0>7d}.jpg'.format(frame_index)), frame) | ||
else: | ||
break | ||
|
||
# TODO,是否应该判断这个break是否是异常抛出 | ||
video.release() | ||
|
||
# image_filename_list = [] | ||
path = os.path.join(temp_results_dir,'*.jpg') | ||
image_filenames = sorted(glob.glob(path)) | ||
|
||
clips = ImageSequenceClip(image_filenames,fps = fps) | ||
|
||
final_clips = clips.set_audio(video_audio_clip) | ||
|
||
# logo = (mp.ImageClip("./simswaplogo/simswap.png") | ||
# .set_duration(clips.duration) # 水印持续时间 | ||
# .resize(height=100) # 水印的高度,会等比缩放 | ||
# .margin(right=8, top=8, opacity=1) # 水印边距和透明度 | ||
# .set_pos(("left"))) # 水印的位置 | ||
|
||
# final_clips = mp.CompositeVideoClip([clips, logo]) | ||
|
||
# final_clips.write_videofile("./output/test_beatuy_480p_full.mp4") | ||
final_clips.write_videofile(save_path) | ||
|
||
# video = VideoFileClip(save_path) | ||
|
||
|
||
|
||
|
||
|
||
# video_audio_clip |