forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add the acc16 intrinsic support (apache#3081)
- Loading branch information
1 parent
c3c8b23
commit c391a3f
Showing
2 changed files
with
169 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition | ||
import tvm | ||
import numpy as np | ||
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int16 | ||
|
||
|
||
def benchmark_fc_int8_acc16(): | ||
m = 128 | ||
n = 128 | ||
k = 128 | ||
|
||
X = tvm.placeholder((m, k), name='X', dtype="uint8") | ||
W = tvm.placeholder((n, k), name='W', dtype="int8") | ||
|
||
peak = 512/16*2*2*2 | ||
gops_per_mm = 2*n*m*k | ||
print("Peak {} Gops/s \n".format(peak)) | ||
|
||
def verify(target="llvm -mcpu=skylake-avx512"): | ||
if not tvm.module.enabled(target): | ||
print("skip because %s is not enabled..." % target) | ||
return | ||
|
||
ctx = tvm.context(target, 0) | ||
X = tvm.placeholder((m, k), name='X', dtype="uint8") | ||
W = tvm.placeholder((n, k), name='W', dtype="int8") | ||
pc = dot_16x1x16_int8_int8_int16() | ||
ak = tvm.reduce_axis((0, k), name='k') | ||
|
||
packedW = tvm.placeholder((n/128, 128*(k/2), 2), name='packedW', dtype="int8") | ||
t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype("int16") * packedW[j/128, (ak/2)*128+j%128, ak%2].astype("int16"), axis=ak), name="F") | ||
|
||
t_sch = tvm.create_schedule(t_fc.op) | ||
a_x, a_y = t_fc.op.axis | ||
a_k, = t_fc.op.reduce_axis | ||
|
||
a_yo, a_yi = t_sch[t_fc].split(a_y, factor=128) | ||
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=2) | ||
|
||
a_xo, a_xi = t_sch[t_fc].split(a_x, factor=128) | ||
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=32) | ||
t_sch[t_fc].reorder(a_yo, a_xo, a_koo, a_xi, a_koi, a_yi, a_ki) | ||
|
||
t_sch[t_fc].tensorize(a_yi, pc) | ||
# print(tvm.lower(t_sch, [X, packedW, t_fc], simple_mode=True)) | ||
t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic") | ||
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10) | ||
|
||
# generate the plain data | ||
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8") | ||
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8") | ||
|
||
packW = np.random.uniform(1, 10, size=(n/128, 128*(k/2), 2)).astype("int8") | ||
# This occurs in pre_compute stage | ||
for r_idx in range(n/128): | ||
for s_idx in range(128*(k/2)): | ||
for t_idx in range(2): | ||
packW[r_idx][s_idx][t_idx] = b_[r_idx*128+s_idx%128][s_idx/128*2+t_idx] | ||
|
||
x = tvm.nd.array(a_, ctx) | ||
w = tvm.nd.array(packW, ctx) | ||
y = tvm.nd.array(np.zeros((m, n), dtype="int16"), ctx) | ||
|
||
result = t_evaluator(x, w, y) | ||
gops_per_sec = gops_per_mm/result.mean/1e9 | ||
tvm.testing.assert_allclose( | ||
y.asnumpy(), np.dot(a_, b_.T), rtol=1e-5) | ||
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}.'.format(result.mean*1000, gops_per_sec, gops_per_sec/peak)) | ||
t_func.export_library("gemm_tensorize.o") | ||
|
||
verify() | ||
|
||
if __name__ == "__main__": | ||
benchmark_fc_int8_acc16() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters