Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 29 additions & 14 deletions src/prog_models/utils/noise_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,16 +6,22 @@
# ---------------------------
# Measurement Noise Functions
# ---------------------------
def uniform_measurement_noise(self, z : dict):
return self.OutputContainer(z.matrix + np.random.uniform(-1*self.parameters['measurement_noise'].matrix, self.parameters['measurement_noise'].matrix, size=z.matrix.shape))
def uniform_measurement_noise(self, z: dict):
noise_mat = self.parameters['measurement_noise'].matrix
z.matrix = z.matrix + np.random.uniform(-1*noise_mat, noise_mat, size=z.matrix.shape)
return z

def triangular_measurement_noise(self, z : dict):
return self.OutputContainer(z.matrix + np.random.triangular(-1*self.parameters['measurement_noise'].matrix, 0, self.parameters['measurement_noise'].matrix, size=z.matrix.shape))
def triangular_measurement_noise(self, z: dict):
noise_mat = self.parameters['measurement_noise'].matrix
z.matrix = z.matrix + np.random.triangular(-1*noise_mat, 0, noise_mat, size=z.matrix.shape)
return z

def normal_measurement_noise(self, z : dict):
return self.OutputContainer(z.matrix + np.random.normal(0, self.parameters['measurement_noise'].matrix, size=z.matrix.shape))
def normal_measurement_noise(self, z: dict):
noise_mat = self.parameters['measurement_noise'].matrix
z.matrix = z.matrix + np.random.normal(0, noise_mat, size=z.matrix.shape)
return z

def no_measurement_noise(self, z : dict) -> dict:
def no_measurement_noise(self, z: dict) -> dict:
return z

measurement_noise_functions = {
Expand All @@ -30,16 +36,25 @@ def no_measurement_noise(self, z : dict) -> dict:
# Process Noise Functions
# ---------------------------

def triangular_process_noise(self, x : dict, dt : int =1):
return self.StateContainer(x.matrix + dt*np.random.triangular(-1*self.parameters['process_noise'].matrix, 0, self.parameters['process_noise'].matrix, size=x.matrix.shape))
def triangular_process_noise(self, x: dict, dt: int = 1):
noise_mat = self.parameters['process_noise'].matrix
noise = np.random.triangular(-1*noise_mat, 0, noise_mat, size=x.matrix.shape)
x.matrix = x.matrix + dt*noise
return x

def uniform_process_noise(self, x : dict, dt : int =1):
return self.StateContainer(x.matrix + dt*np.random.uniform(-1*self.parameters['process_noise'].matrix, self.parameters['process_noise'].matrix, size=x.matrix.shape))
def uniform_process_noise(self, x: dict, dt: int = 1):
noise_mat = self.parameters['process_noise'].matrix
noise = np.random.uniform(-1*noise_mat, noise_mat, size=x.matrix.shape)
x.matrix = x.matrix + dt*noise
return x

def normal_process_noise(self, x : dict, dt : int =1):
return self.StateContainer(x.matrix + dt*np.random.normal(0, self.parameters['process_noise'].matrix, size=x.matrix.shape))
def normal_process_noise(self, x: dict, dt: int = 1):
noise_mat = self.parameters['process_noise'].matrix
noise = np.random.normal(0, noise_mat, size=x.matrix.shape)
x.matrix = x.matrix + dt*noise
return x

def no_process_noise(self, x : dict, dt :int =1) -> dict:
def no_process_noise(self, x: dict, dt: int = 1) -> dict:
return x

process_noise_functions = {
Expand Down