forked from utd-ai/Data_Mining_in_Action_2018_Spring
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f3b6f75
commit df1bb95
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
147 changes: 147 additions & 0 deletions
147
sport/hw1/benchmarks/Tushin_Kirill_0.259_benchmark.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"import re\n", | ||
"from lightgbm import LGBMClassifier\n", | ||
"\n", | ||
"import warnings\n", | ||
"warnings.filterwarnings(\"ignore\")\n", | ||
"\n", | ||
"pd.set_option('display.max_columns', 300)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def predict(model , data , columns):\n", | ||
" data = data.copy()\n", | ||
" predict_answer = {}\n", | ||
" for col in ['work' , 'home']:\n", | ||
" data['predict_' + col] = model[col].predict_proba(data[columns])[:,1]\n", | ||
" tmp = data.groupby(['customer_id' , 'pos_address_lat' , 'pos_address_lon'])[['predict_' + col]].max()\n", | ||
" tmp = tmp.groupby(['customer_id']).idxmax()['predict_' + col].values\n", | ||
" \n", | ||
" predict = [np.array(x) for x in tmp]\n", | ||
" predict = pd.DataFrame(predict , columns=['customer_id' , col + '_predict_lat' , col + '_predict_lon'])\n", | ||
" predict_answer[col] = predict.convert_objects(convert_numeric=True)\n", | ||
" \n", | ||
" return pd.merge(predict_answer['work'] , predict_answer['home'] , on='customer_id')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train = pd.read_csv(\"data/train_set.csv.gz\", compression=\"gzip\").rename(columns={\"pos_adress_lat\": \"pos_address_lat\",\"pos_adress_lon\": \"pos_address_lon\"})\n", | ||
"test = pd.read_csv(\"data/test_set.csv.gz\", compression=\"gzip\")\n", | ||
"sample = pd.read_csv('data/sample.csv')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def clean_mcc(mcc):\n", | ||
" if type(mcc) == int:\n", | ||
" return mcc\n", | ||
" mcc = mcc.split(',')\n", | ||
" if len(mcc) == 1:\n", | ||
" return int(mcc[0])\n", | ||
" else:\n", | ||
" return 1000*int(mcc[0]) + int(mcc[1])\n", | ||
"test['mcc'] = test['mcc'].apply(clean_mcc)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"### Target\n", | ||
"train['target_home'] = (np.sqrt((train['home_add_lat'] - train['pos_address_lat']) ** 2 + (train['home_add_lon'] - train['pos_address_lon']) ** 2) < 0.02).astype('int8')\n", | ||
"train['target_work'] = (np.sqrt((train['work_add_lat'] - train['pos_address_lat']) ** 2 + (train['work_add_lon'] - train['pos_address_lon']) ** 2) < 0.02).astype('int8')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"good_col = ['amount', 'atm_address_lat', 'atm_address_lon', 'currency', 'mcc', 'pos_address_lat','pos_address_lon']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"CPU times: user 50.2 s, sys: 237 ms, total: 50.4 s\n", | ||
"Wall time: 6.78 s\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"%%time\n", | ||
"model_home = LGBMClassifier(n_jobs=-1)\n", | ||
"model_work = LGBMClassifier(n_jobs=-1)\n", | ||
"model_home.fit(train[good_col] , train['target_home'])\n", | ||
"model_work.fit(train[good_col] , train['target_work'])\n", | ||
"\n", | ||
"model = {'home':model_home , 'work':model_work}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"predict_test = sample.merge(predict(model , test , good_col) , how='left').drop(sample.columns[1:] , axis=1)\n", | ||
"predict_test = predict_test.fillna(predict_test.median())\n", | ||
"predict_test.columns = sample.columns\n", | ||
"predict_test.to_csv('first.csv' , index=False)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |