forked from mGalarnyk/datasciencecoursera
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
17 changed files
with
18,613 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
## Exploratory Data Analysis Project 1 | ||
|
||
This assignment uses data from the UC Irvine Machine Learning Repository, a popular repository for machine learning datasets. In particular, we will be using the “Individual household electric power consumption Data Set” which I have made available on the course web site: | ||
|
||
Dataset: | ||
[Electric power consumption](https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip) [20Mb] | ||
</br>Description: Measurements of electric power consumption in one household with a one-minute sampling rate over a period of almost 4 years. Different electrical quantities and some sub-metering values are available. | ||
```R | ||
library("data.table") | ||
|
||
setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data") | ||
|
||
#Reads in data from file then subsets data for specified dates | ||
powerDT <- data.table::fread(input = "household_power_consumption.txt" | ||
, na.strings="?" | ||
) | ||
|
||
# Prevents histogram from printing in scientific notation | ||
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")] | ||
|
||
# Change Date Column to Date Type | ||
powerDT[, Date := lapply(.SD, as.Date, "%d/%m/%Y"), .SDcols = c("Date")] | ||
|
||
# Filter Dates for 2007-02-01 and 2007-02-02 | ||
powerDT <- powerDT[(Date >= "2007-02-01") & (Date <= "2007-02-02")] | ||
|
||
png("plot1.png", width=480, height=480) | ||
|
||
## Plot 1 | ||
hist(powerDT[, Global_active_power], main="Global Active Power", | ||
xlab="Global Active Power (kilowatts)", ylab="Frequency", col="Red") | ||
|
||
dev.off() | ||
``` | ||
![](https://github.com/mGalarnyk/datasciencecoursera/blob/master/4_Exploratory_Data_Analysis/project/plot1.png) | ||
```R | ||
library("data.table") | ||
|
||
setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data") | ||
|
||
#Reads in data from file then subsets data for specified dates | ||
powerDT <- data.table::fread(input = "household_power_consumption.txt" | ||
, na.strings="?" | ||
) | ||
|
||
# Prevents Scientific Notation | ||
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")] | ||
|
||
# Making a POSIXct date capable of being filtered and graphed by time of day | ||
powerDT[, dateTime := as.POSIXct(paste(Date, Time), format = "%d/%m/%Y %H:%M:%S")] | ||
|
||
# Filter Dates for 2007-02-01 and 2007-02-02 | ||
powerDT <- powerDT[(dateTime >= "2007-02-01") & (dateTime < "2007-02-03")] | ||
|
||
png("plot2.png", width=480, height=480) | ||
|
||
## Plot 2 | ||
plot(x = powerDT[, dateTime] | ||
, y = powerDT[, Global_active_power] | ||
, type="l", xlab="", ylab="Global Active Power (kilowatts)") | ||
|
||
dev.off() | ||
``` | ||
![](https://github.com/mGalarnyk/datasciencecoursera/blob/master/4_Exploratory_Data_Analysis/project/plot2.png) | ||
```R | ||
library("data.table") | ||
|
||
setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data") | ||
|
||
#Reads in data from file then subsets data for specified dates | ||
powerDT <- data.table::fread(input = "household_power_consumption.txt" | ||
, na.strings="?" | ||
) | ||
|
||
# Prevents Scientific Notation | ||
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")] | ||
|
||
# Making a POSIXct date capable of being filtered and graphed by time of day | ||
powerDT[, dateTime := as.POSIXct(paste(Date, Time), format = "%d/%m/%Y %H:%M:%S")] | ||
|
||
# Filter Dates for 2007-02-01 and 2007-02-02 | ||
powerDT <- powerDT[(dateTime >= "2007-02-01") & (dateTime < "2007-02-03")] | ||
|
||
png("plot3.png", width=480, height=480) | ||
|
||
# Plot 3 | ||
plot(powerDT[, dateTime], powerDT[, Sub_metering_1], type="l", xlab="", ylab="Energy sub metering") | ||
lines(powerDT[, dateTime], powerDT[, Sub_metering_2],col="red") | ||
lines(powerDT[, dateTime], powerDT[, Sub_metering_3],col="blue") | ||
legend("topright" | ||
, col=c("black","red","blue") | ||
, c("Sub_metering_1 ","Sub_metering_2 ", "Sub_metering_3 ") | ||
,lty=c(1,1), lwd=c(1,1)) | ||
|
||
dev.off() | ||
``` | ||
![](https://github.com/mGalarnyk/datasciencecoursera/blob/master/4_Exploratory_Data_Analysis/project/plot3.png) | ||
```R | ||
library("data.table") | ||
|
||
setwd("~/Desktop/datasciencecoursera/4_Exploratory_Data_Analysis/project/data") | ||
|
||
#Reads in data from file then subsets data for specified dates | ||
powerDT <- data.table::fread(input = "household_power_consumption.txt" | ||
, na.strings="?" | ||
) | ||
|
||
# Prevents Scientific Notation | ||
powerDT[, Global_active_power := lapply(.SD, as.numeric), .SDcols = c("Global_active_power")] | ||
|
||
# Making a POSIXct date capable of being filtered and graphed by time of day | ||
powerDT[, dateTime := as.POSIXct(paste(Date, Time), format = "%d/%m/%Y %H:%M:%S")] | ||
|
||
# Filter Dates for 2007-02-01 and 2007-02-02 | ||
powerDT <- powerDT[(dateTime >= "2007-02-01") & (dateTime < "2007-02-03")] | ||
|
||
png("plot4.png", width=480, height=480) | ||
|
||
par(mfrow=c(2,2)) | ||
|
||
# Plot 1 | ||
plot(powerDT[, dateTime], powerDT[, Global_active_power], type="l", xlab="", ylab="Global Active Power") | ||
|
||
# Plot 2 | ||
plot(powerDT[, dateTime],powerDT[, Voltage], type="l", xlab="datetime", ylab="Voltage") | ||
|
||
# Plot 3 | ||
plot(powerDT[, dateTime], powerDT[, Sub_metering_1], type="l", xlab="", ylab="Energy sub metering") | ||
lines(powerDT[, dateTime], powerDT[, Sub_metering_2], col="red") | ||
lines(powerDT[, dateTime], powerDT[, Sub_metering_3],col="blue") | ||
legend("topright", col=c("black","red","blue") | ||
, c("Sub_metering_1 ","Sub_metering_2 ", "Sub_metering_3 ") | ||
, lty=c(1,1) | ||
, bty="n" | ||
, cex=.5) | ||
|
||
# Plot 4 | ||
plot(powerDT[, dateTime], powerDT[,Global_reactive_power], type="l", xlab="datetime", ylab="Global_reactive_power") | ||
|
||
dev.off() | ||
``` | ||
![](https://github.com/mGalarnyk/datasciencecoursera/blob/master/4_Exploratory_Data_Analysis/project/plot4.png) |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.