-
Notifications
You must be signed in to change notification settings - Fork 2k
Closed
Labels
Description
This is the code that I ran
import matplotlib.pyplot as plt
import seaborn as sns
fmri = sns.load_dataset("fmri")
fmri.info()
sns.set(style="darkgrid")
sns.lineplot(data=fmri, x="timepoint", y="signal", hue="region", style="event")
plt.show()This is the error I got
❯ python3 example.py
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1064 entries, 0 to 1063
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 subject 1064 non-null object
1 timepoint 1064 non-null int64
2 event 1064 non-null object
3 region 1064 non-null object
4 signal 1064 non-null float64
dtypes: float64(1), int64(1), object(3)
memory usage: 41.7+ KB
Traceback (most recent call last):
File "/home/rizwan/Downloads/Seaborn-Issue/example.py", line 8, in <module>
sns.lineplot(
File "/home/rizwan/Miniconda3/envs/py39/lib/python3.9/site-packages/seaborn/relational.py", line 645, in lineplot
p.plot(ax, kwargs)
File "/home/rizwan/Miniconda3/envs/py39/lib/python3.9/site-packages/seaborn/relational.py", line 489, in plot
func(
File "/home/rizwan/Miniconda3/envs/py39/lib/python3.9/site-packages/matplotlib/__init__.py", line 1423, in inner
return func(ax, *map(sanitize_sequence, args), **kwargs)
File "/home/rizwan/Miniconda3/envs/py39/lib/python3.9/site-packages/matplotlib/axes/_axes.py", line 5367, in fill_between
return self._fill_between_x_or_y(
File "/home/rizwan/Miniconda3/envs/py39/lib/python3.9/site-packages/matplotlib/axes/_axes.py", line 5272, in _fill_between_x_or_y
ind, dep1, dep2 = map(
File "/home/rizwan/Miniconda3/envs/py39/lib/python3.9/site-packages/numpy/ma/core.py", line 2360, in masked_invalid
return masked_where(~(np.isfinite(getdata(a))), a, copy=copy)
TypeError: ufunc 'isfinite' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''Environment
- Python
3.9.15 - Seaborn
0.12.1 - Matplotlib
3.6.2 - Pandas
1.5.2 - Numpy
1.24.0
This error only occurs when I use numpy 1.24.0, version 1.23.5 or lower works as usual.