Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
mtpalovic authored Apr 1, 2022
1 parent 24e96d2 commit 9437e95
Showing 1 changed file with 130 additions and 18 deletions.
148 changes: 130 additions & 18 deletions nnn.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "c4b287cf",
"metadata": {},
"outputs": [],
Expand All @@ -17,7 +17,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "2bdb3b65",
"metadata": {},
"outputs": [],
Expand All @@ -30,7 +30,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "b54891d4",
"metadata": {},
"outputs": [],
Expand All @@ -43,39 +43,39 @@
},
{
"cell_type": "markdown",
"id": "e9ae3d7e",
"id": "86d860b6",
"metadata": {},
"source": [
"$$J = -\\frac{1}{m}\\sum\\limits_{i=1}^{m}y_i \\ln(a_i)+(1-y_i)\\ln(1-a_i)$$"
]
},
{
"cell_type": "markdown",
"id": "cbf5251b",
"id": "d088e26a",
"metadata": {},
"source": [
"$$A = \\sigma(w^{T}x + b)$$"
]
},
{
"cell_type": "markdown",
"id": "08c87f20",
"id": "b8a4be1b",
"metadata": {},
"source": [
"$$ \\frac{\\partial J}{\\partial w} = \\frac{1}{m}X(A-Y)^T$$"
]
},
{
"cell_type": "markdown",
"id": "8d4fb4ee",
"id": "a63eb29c",
"metadata": {},
"source": [
"$$\\frac{\\partial J}{\\partial b} = \\frac{1}{m}\\sum\\limits_{i=1}^{m}(a_i - y_i)$$"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"id": "6ae3724c",
"metadata": {},
"outputs": [],
Expand Down Expand Up @@ -343,7 +343,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "82a6813c",
"metadata": {},
"outputs": [],
Expand All @@ -353,43 +353,155 @@
},
{
"cell_type": "code",
"execution_count": null,
"id": "87036383",
"execution_count": 6,
"id": "56824850",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"array([[0.7991071 ],\n",
" [0.21605666],\n",
" [0.99981016],\n",
" [0.63657201]])"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neural_nets.w"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 7,
"id": "7a997e9d",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"(0.9364638761160147,\n",
" {'d_w': array([[0.13694411],\n",
" [0.03113021],\n",
" [0.22317942],\n",
" [0.10489103]]),\n",
" 'd_b': 0.5094444540829945})"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neural_nets.forward_propagate_vectorised()"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 8,
"id": "d4af58aa",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"(0.9364638761160151,\n",
" {'d_w1': array([[0.13694411],\n",
" [0.03113021],\n",
" [0.22317942],\n",
" [0.10489103]]),\n",
" 'd_b1': 0.5094444540829937})"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neural_nets.forward_propagate_not_vectorised()"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"id": "b477ae6f",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Costs after iter 0:0.9364638761160147\n",
"Costs after iter 100:0.7803255531585063\n",
"Costs after iter 200:0.6509218172574857\n",
"Costs after iter 300:0.5456683422196734\n",
"Costs after iter 400:0.4612434451386572\n",
"Costs after iter 500:0.39406150223948505\n",
"Costs after iter 600:0.3406993328908312\n",
"Costs after iter 700:0.2981677564601786\n",
"Costs after iter 800:0.26401617462743593\n",
"Costs after iter 900:0.23631838671023508\n",
"Costs after iter 1000:0.2135987513297842\n",
"Costs after iter 1100:0.1947417565159418\n",
"Costs after iter 1200:0.1789078765441063\n",
"Costs after iter 1300:0.1654642564759676\n",
"Costs after iter 1400:0.15393114763640522\n",
"Costs after iter 1500:0.1439419197826715\n",
"Costs after iter 1600:0.13521372798584394\n",
"Costs after iter 1700:0.1275261481835068\n",
"Costs after iter 1800:0.12070562566821398\n",
"Costs after iter 1900:0.1146141145793622\n",
"Costs after iter 2000:0.1091407278782687\n",
"Costs after iter 2100:0.10419555264293158\n",
"Costs after iter 2200:0.0997050297377399\n",
"Costs after iter 2300:0.09560847095995492\n",
"Costs after iter 2400:0.0918554095589699\n"
]
},
{
"data": {
"text/plain": [
"{'w': array([[0.27804286],\n",
" [0.02444421],\n",
" [0.06776185],\n",
" [0.1587318 ]]),\n",
" 'b': -2.468142975034734}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAez0lEQVR4nO3deXxdZb3v8c8v8zyPTZMmnehMS1NKC1SQsQUpXEALKsjFAyh61ZfnCh71Hj33qAcvetQXehA5DCKDMoMMBRUZWoampXNpSdO0SdNmTjM183P/2LslLUlJ2yQre+/v+/Xar733Ws/O/j17td+sPGvtZ5lzDhERCXxhXhcgIiLDQ4EuIhIkFOgiIkFCgS4iEiQU6CIiQSLCqzfOyMhwhYWFXr29iEhAWrt2bZ1zLnOgdZ4FemFhISUlJV69vYhIQDKz3YOt05CLiEiQUKCLiAQJBbqISJBQoIuIBAkFuohIkFCgi4gECQW6iEiQCLhA/7C6hX97fiudPb1elyIiMqYEXKBXNLZz36pdrN5Z73UpIiJjSsAF+uJJGcRHhfPKlv1elyIiMqYEXKDHRIZzzrQsXt1aTW+frrYkInJIwAU6wEUzc6hr7WLdnkavSxERGTMCMtDPPSWTqPAwVm7WsIuIyCEBGeiJMZEsnpzOyq370UWuRUR8AjLQwTfsUtFwkG37WrwuRURkTAjYQD9/ejZmsFJnu4iIAAEc6JmJ0RRPSFWgi4j4BWygg2/Y5YP9Leypb/e6FBERzwV8oAO8slV76SIiAR3o+WlxTM9N0rCLiAgBHugAF83MpmR3I7UtnV6XIiLiqYAP9Itn5eCcznYREQn4QD8lO5GJGfG8uGmf16WIiHgq4APdzLhkTi7vlNVT16phFxEJXQEf6ACXzMmlz8HLmttFREJYUAT6KdmJTMqM54WNGnYRkdAVFIHuG3YZx7u76qlp6fC6HBERTwRFoANcMts37KIpdUUkVAVNoE/NTmByVgIv6GwXEQlRQRPoZsYls3N5d1eDhl1EJCQFTaCD72wXp7NdRCREBVWgT81OZEpWAn/R2S4iEoKCKtDBt5e+pryBmmYNu4hIaAm6QL/UP+yivXQRCTVBF+iTsxKZkZvEs+v3el2KiMioCrpAB7h83jg2VB5gV12b16WIiIyaoAz0y07NwwyeeV976SISOoYU6GZ2sZltN7NSM7t9gPXJZva8mW0wsy1mdsPwlzp0OckxnFGUzrPr9+Kc87IUEZFR84mBbmbhwG+ApcAM4Bozm3FUs1uBrc65U4FzgJ+bWdQw13pcLp83jvL6djZUHvCyDBGRUTOUPfTTgVLnXJlzrgt4DFh+VBsHJJqZAQlAA9AzrJUep4tn5RIVHqZhFxEJGUMJ9Dygot/zSv+y/u4CpgNVwCbgG865vqN/kJndZGYlZlZSW1t7giUPTXJsJOdNz+IvG6vo6f1YKSIiQWcogW4DLDt6YPoiYD0wDpgL3GVmSR97kXP3OOeKnXPFmZmZx1nq8Vs+N4+61i5W7awf8fcSEfHaUAK9Esjv93w8vj3x/m4AnnI+pcAuYNrwlHjizp2WSVJMBM9q2EVEQsBQAn0NMMXMivwHOlcAzx3VZg9wHoCZZQOnAGXDWeiJiI4IZ9nsXFZu2c/Brl6vyxERGVGfGOjOuR7ga8BKYBvwZ+fcFjO7xcxu8Tf7v8BiM9sE/A24zTlXN1JFH4/lc/No6+rlla2agVFEglvEUBo5514EXjxq2d39HlcBFw5vacNjYVEaeSmxPLG2kuVzjz6WKyISPILym6L9hYUZV84fz1uldVQ1HfS6HBGRERP0gQ5w9fzxOAdPrav0uhQRkRETEoGenxbHGRPTeGJtpaYCEJGgFRKBDnD1/HzK69tZU97odSkiIiMiZAJ96ewc4qPCebyk4pMbi4gEoJAJ9LioCC6Zk8sLm/bR1unpNDMiIiMiZAId4OrifNq7enlxky5PJyLBJ6QCvXhCKkUZ8TyxVme7iEjwCalANzOumj+ed3c1sLtel6cTkeASUoEOcOVp4wkzeGyNDo6KSHAJuUDPSY7h09Oyebykgq4ezZMuIsEj5AId4PMLC6hr7eLVrdVelyIiMmxCMtCXTM0kLyWWR97b7XUpIiLDJiQDPTzMWLEgn1Wl9ZTX6eCoiASHkAx0gM8uyCc8zHj0vT1elyIiMixCNtCzk2I4f3oWj6+tpLNHVzMSkcAXsoEOcO3CCTS0dbFyiw6OikjgC+lAP3tyBvlpsTzyrg6OikjgC+lADwszViwo4J2yBkprWrwuR0TkpIR0oAN8bkE+UeFhPLhae+kiEthCPtAzEqL5zKnjeHJdJQcOdntdjojICQv5QAf40uJC2rt6dfELEQloCnRg9vhkiiek8oe3d9Pbp2uOikhgUqD7fenMQvY0tPOP7TVelyIickIU6H4XzcwhJymGB1aXe12KiMgJUaD7RYaH8cVFE3jzwzo+rNYpjCISeBTo/axYkE9URBgPvl3udSkiIsdNgd5PekI0y08dx5Nr99LU3uV1OSIix0WBfpQbzy7iYHcvD7+rWRhFJLAo0I8yLSeJJVMzuX9VOR3dmoVRRAKHAn0AtyyZSF1rJ0+/v9frUkREhkyBPoBFk9KZlZfE798so09fNBKRAKFAH4CZcdOSSZTVtvHXbZorXUQCgwJ9EMtm5TA+NZZ73ijzuhQRkSFRoA8iIjyMG88qomR3I2t3N3hdjojIJ1KgH8Nni/NJjo3k7te1ly4iY58C/RjioyO4fnEhr26t5oP9zV6XIyJyTAr0T/A/zywkPiqcu/5e6nUpIiLHNKRAN7OLzWy7mZWa2e2DtDnHzNab2RYze314y/ROSlwU1y0u5IVN+3TdUREZ0z4x0M0sHPgNsBSYAVxjZjOOapMC/Ba4zDk3E7h6+Ev1zpfPKiImIpzfvLbT61JERAY1lD3004FS51yZc64LeAxYflSba4GnnHN7AJxzQXWViPSEaD6/sIBn1++lvK7N63JERAY0lEDPA/pfbLPSv6y/qUCqmf3DzNaa2XUD/SAzu8nMSsyspLa29sQq9shNSyYSGR7Gb/+hsXQRGZuGEug2wLKjvw8fAcwHLgEuAn5gZlM/9iLn7nHOFTvnijMzM4+7WC9lJcVwzekFPLVuLxUN7V6XIyLyMUMJ9Eogv9/z8UDVAG1eds61OefqgDeAU4enxLHj5k9NJMxMe+kiMiYNJdDXAFPMrMjMooAVwHNHtXkWONvMIswsDlgIbBveUr2XmxzLNafn8+eSSo2li8iY84mB7pzrAb4GrMQX0n92zm0xs1vM7BZ/m23Ay8BG4D3gXufc5pEr2zu3fnoykeHGf/51h9eliIgcwZzzZnrY4uJiV1JS4sl7n6w7Xv6Au1/fyUvfOJtpOUlelyMiIcTM1jrnigdap2+KnoCbl0wkITqCn7+ivXQRGTsU6CcgJS6Km5dM5NWt1by/p9HrckREAAX6CbvhzCLS46O485XtXpciIgIo0E9YfHQEt547mVWl9bz1YZ3X5YiIKNBPxrULC8hLieUnL26jV9ceFRGPKdBPQkxkOLctncbWfc08ua7S63JEJMQp0E/SZ+bkMjc/hTtXbqe9q8frckQkhCnQT5KZ8YNLp1PT0qkLSouIpxTow2D+hDSWzc7hd6+XUd3c4XU5IhKiFOjD5LaLp9Hb57hzpU5jFBFvKNCHyYT0eK5fPIEn1lWyqfKA1+WISAhSoA+jr583hfT4KH7w7Gb6dBqjiIwyBfowSoqJ5LtLp7O+oonH11Z88gtERIaRAn2Y/Y/T8lhQmModL2+nqb3L63JEJIQo0IeZmfGjy2bR1N6leV5EZFQp0EfAjHFJXLeokIff3aMDpCIyahToI+RbF0wlPT6a7z+7WfO8iMioUKCPkOTYSL5/yXQ2VDTx0NvlXpcjIiFAgT6Cls8dxzmnZPKzldupbGz3uhwRCXIK9BFkZvz75bMA+N7Tm/Hq+q0iEhoU6CNsfGoc//uiU3h9Ry3Prq/yuhwRCWIK9FFw3aJC5hWk8KPnt1Df2ul1OSISpBTooyA8zLjjyjm0dvbww+e3el2OiAQpBfoomZqdyDfOm8LzG6p4foOGXkRk+CnQR9Etn5rEvIIUvv/MZvYf0LzpIjK8FOijKCI8jF98di5dPX1858mNOutFRIaVAn2UFWXE8y/LpvHGjlr++M5ur8sRkSCiQPfAF86YwJKpmfz4xW2U1bZ6XY6IBAkFugfMjP931RxiIsP5+qPv09nT63VJIhIEFOgeyU6K4c6rTmVLVTM/ffEDr8sRkSCgQPfQ+TOyufGsIh5YXc7Lm/d7XY6IBDgFusduu3gac8Yn850nNlDRoAm8ROTEKdA9FhURxl3XnIZz8PVH36e7t8/rkkQkQCnQx4CC9DjuuGoO6yua+PEL27wuR0QClAJ9jFg2O/fwePqTayu9LkdEApACfQz57tJpLJqYzr88vUnXIhWR46ZAH0MiwsO469p5ZCREc/NDJZpqV0SOy5AC3cwuNrPtZlZqZrcfo90CM+s1s6uGr8TQkp4Qze++OJ/6ti5ufWSdDpKKyJB9YqCbWTjwG2ApMAO4xsxmDNLuDmDlcBcZamblJfMfV87mnbIG/s+zWzSJl4gMyVD20E8HSp1zZc65LuAxYPkA7b4OPAnUDGN9IeuKeeO59dxJPPreHu55o8zrckQkAAwl0POAin7PK/3LDjOzPOAK4O5j/SAzu8nMSsyspLa29nhrDTnfvuAULp2Ty09f+oAXN+3zuhwRGeOGEug2wLKjxwB+CdzmnDvmLFPOuXucc8XOueLMzMwhlhi6wsKMO68+lfkTUvnWn9azbk+j1yWJyBg2lECvBPL7PR8PHH0NtWLgMTMrB64Cfmtmlw9HgaEuJjKce744n+ykGP7pwRJ21bV5XZKIjFFDCfQ1wBQzKzKzKGAF8Fz/Bs65IudcoXOuEHgC+Kpz7pnhLjZUpSdEc/8NC3DAF+59V5evE5EBfWKgO+d6gK/hO3tlG/Bn59wWM7vFzG4Z6QLFZ1JmAg/csICm9i6++N/v0tjW5XVJIjLGmFenxBUXF7uSkhJP3juQrd5Zx5fuX8P03CQe/vJCEqIjvC5JREaRma11zhUPtE7fFA0wiydlcNc189i89wA3P1RCR7eudiQiPgr0AHThzBx+duUcVpXWc/NDaxXqIgIo0APWlfPHc8eVs3l9R61CXUQABXpA+9yCAoW6iBymQA9wCnUROUSBHgQOhfobH9Zy/X3v0dLR7XVJIuIBBXqQ+NyCAn75ubms3d3INb9/hzrNpS4SchToQWT53Dx+f10xpTWtfPbut6lsbPe6JBEZRQr0IHPutCz+eONC6lo7ueq/3mZHdYvXJYnIKFGgB6HiwjT+dPMi+pzjyt+u5s0PNVWxSChQoAep6blJPH3rmeSlxvKl+9fw6Ht7vC5JREaYAj2I5aXE8vgtizh7SgbffWoTP3lxG319upydSLBSoAe5xJhI7r2umOsWTeCeN8q46aG1NOu0RpGgpEAPARHhYfzb8ln86LKZvLa9hsvvWsWHOlgqEnQU6CHk+sWFPPLlhTR3dHP5b1bxkq5TKhJUFOghZuHEdP7y9bOZmpPIVx5ex09f2kZPb5/XZYnIMFCgh6Cc5Bgeu+kMPr+wgN+9XsZnf/c2FQ36EpJIoFOgh6joiHB+fMVsfrViLh9Wt7Ls12/ywkYNwYgEMgV6iFs+N48X/tfZTMpM4NZH1nH7kxtp7+rxuiwROQEKdKEgPY7Hb1nEV8+ZxJ9KKrjk12+xdneD12WJyHFSoAsAkeFhfOfiaTz85YV09fRx1d1v8+MXtmp+dZEAokCXIyyelMHKby3hmtML+P2bu1j26zdZu7vR67JEZAgU6PIxCdER/OSK2fzxxoV0dvdx9d2r+dHzW3ThDJExToEugzprSgYvf/Nsrl1YwAOryzn/F6/zl41VOKf5YETGIgW6HFNiTCT/fvlsnvrKYjISovnaI+9z/f1r2F3f5nVpInIUBboMybyCVJ699Uz+9TMzWLe7kQv+8w3uXLmd1k6d4igyVijQZcgiwsO44cwi/vbtT7F0Vg53vVbKuXf+gz+t2UOvpuUV8ZwCXY5bdlIMv1oxj6e/upiCtDhue3ITl/z6TVaV1nldmkhIU6DLCZtXkMoTtyzirmvn0dLRw+fvfZfr73uPjZVNXpcmEpIU6HJSzIxL54zjb9/+FN9dOo0NlU1cdtcqbvpDCR/sb/a6PJGQYl6dglZcXOxKSko8eW8ZOS0d3dz3Vjn3vllGa1cPl84ZxzfPn8KkzASvSxMJCma21jlXPOA6BbqMhKb2Lu55o4z7V5XT0dPL0lk5fPWcyczKS/a6NJGApkAXz9S1dnLfW7t46O3dtHT2cPaUDL56zmTOmJiGmXldnkjAUaCL55o7uvnjO7u5761d1LV2cVpBCv909kQumJFNRLgO5YgMlQJdxoyO7l4eL6ngnjfLqGg4SF5KLF9cNIEVC/JJiYvyujyRMU+BLmNOb5/jb9uqeWB1Oat31hMTGcYV8/K4fnEh03KSvC5PZMxSoMuY9sH+Zh5cXc7T7++lo7uP4gmprDi9gGWzc4iLivC6PJExRYEuAaGxrYs/l1TwpzUVlNW1kRgdwWVzx7FiQQGzx+vsGBEYhkA3s4uBXwHhwL3Ouf84av3ngdv8T1uBrzjnNhzrZyrQZTDOOdaUN/LYmj28sHEfnT19zByXxNXzx3PpqePISIj2ukQRz5xUoJtZOLADuACoBNYA1zjntvZrsxjY5pxrNLOlwA+dcwuP9XMV6DIUBw5289z6vTy2poItVc2EhxlnTc5g+dxxXDgzh4RoDclIaDnZQF+EL6Av8j//LoBz7qeDtE8FNjvn8o71cxXocrx2VLfwzPt7eXZ9FXubDhITGcYFM3K4fO44zp6SSVSETn+U4HesQB/K7k0eUNHveSVwrL3vG4GXBinkJuAmgIKCgiG8tchHpmYn8p2Lp/HPF57C2j2NPPP+Xl7YtI/nN1SRGB3BedOzuHhWDp+amkVsVLjX5YqMuqEE+kBf5xtwt97MzsUX6GcNtN45dw9wD/j20IdYo8gRwsKMBYVpLChM418/M5O3Smt5adN+Xt1WzTPrq4iJDOOcqVksnZ3DudOySIqJ9LpkkVExlECvBPL7PR8PVB3dyMzmAPcCS51z9cNTnsixRUWE8elp2Xx6WjY9vX28t6uBl7fs5+XN+3l5y34iw40zJqZzzilZfHpaFkUZ8V6XLDJihjKGHoHvoOh5wF58B0Wvdc5t6demAPg7cJ1zbvVQ3lhj6DKS+voc71c0sXLLfv7+QQ2lNa0AFKbHHQ7304vSiInU0IwEluE4bXEZ8Et8py3e55z7sZndAuCcu9vM7gWuBHb7X9Iz2BseokCX0VTR0M5r22t47YMaVu+sp7Onj9jIcBZPSufMyRmcOTmDqdkJmjBMxjx9sUikn47uXt7eWc9r22t4fUctu+vbAchIiGLRpAzO9Id8flqcx5WKfNzJnuUiElRiIsM5d1oW507LAqCysZ3VO+tZXVrHqp31PL/Bd4goPy2WxRMzOL3IdwA2Py1We/AypmkPXaQf5xylNa2s8of7u2X1NHf0AJCVGM2CwjSKC1NZUJjG9NwkwsMU8DK6NOQicoL6+hw7alpYU95ISXkDJeWN7G06CEBCdATzClKYPyGVufkpnDo+hdR4TQEsI0uBLjKM9jYdPBzua8ob2F7dwqH/RgVpcZyan8Kp45OZm5/CzHHJ+pKTDCuNoYsMo7yUWPLm5rF8rm92i5aObjbtPcDGygNsqGhibXnD4XH48DBjanYip45PZmZeMjNyk5iem6hpgWVEaA9dZATUtHSwseIAGyqbWF/RxMbKAxw42A2AGRRlxDMjN4kZ45IO32clxnhctQQC7aGLjLKsxBjOnxHD+TOyAd/B1qoDHWytavbd9vnC/i8b9x1+TUZCNDPGJTEtJ5HJWQlMzU5kSlYC8ZpRUoZI/1JERoGZ+YZqUmK5wB/y4Jse+IN9zWzd5wv6LVXNPFBWT1dP3+E2eSmxTMn2BbyCXo5F/yJEPJQcG8nCieksnJh+eFlvn2NPQzs7qlsorWllR3ULO6pbWb3z40E/KSuBiRnxFGXEU5gRz8SMeMalxOp0yhClQBcZY8LDjCJ/SF8086Plh4L+w+oWPvQHfVltG0/sbqS1s+dwu6jwMCakx/l+RqYv5AvTfY8zE6L15aggpkAXCRD9g/7CfkHvnKO2tZPyunZ21bVSVtfGrto2dtW18Y/ttXT1frRXHxcVTkFaHONT48hPi6UgLY781DgK0uMYnxqrs28CnLaeSIAzM7ISY8hKjOH0orQj1vX2OaqaDrKrro2y2lZ2N7RT0XDQP91BHe1dvUe0z0iIIv9QyKf5Qj8/NY7clFhyk2M0O+UYp0AXCWLhYeYL6LQ4lkzNPGKdc46Gti72NLRT0XiQioZ2362xnfcrGnlh0z56+448rTk9PorclBhyk30HeHOTY8hNiSXPvywrMZqIcF0K0CsKdJEQZWakJ0STnhDNvILUj63v6e1j34EOKhrb2dfUwb4DB9nrv99d38Y7O+tp6Td2D75fINmJ0Yf36HOTfX85ZCVFk50UQ3ZSDFmJ0TpDZ4ToUxWRAUWEhx3eux9Mc0c3+5o6qDpw0HffdJCqAwepajrIpr0H+Ou2ajq6+z72uoToCF/IJ8aQnRRNlj/o+4d+dlKMpk04Tgp0ETlhSTGRJOVEckpO4oDrnXM0d/RQ09xBTUsn1c0dVDd3UtPSQU2z7/naPY3UNHfS2TNw8KcnRJGREE16fBQZidFk+O/T46MPr8tIiCI5NjLkz+BRoIvIiDEzkmMjSY6NZEr2wKEP/uA/2EN1SwfVzb6w39/cQX1rF3WtndS3dbK7vp11exqpb+tioBlLIsLso/D3h/yhXwSp8VGkxfnuU+MiSYuPIikmkrAgO19fgS4injMzkuMiSY6LZOoxgh98Z+40tvuD3h/4dYeC3/+4vrWTnTWt1LZ2HvFlrP7CDFLiokiJiyQtLoqUuCjS4iNJ7Rf8Hz32PU+JixrTX9pSoItIQAkPM/8wS/QntnXO0drZQ1N7Nw1tXTS2+29t3R97XNnYzua93TS0dw36S8DMN8x06K+O5FjfL6EjnvtvKbGRJPVrkxgdMeJDQgp0EQlaZkZiTCSJMZFDvkasc46D3b00tHUd+YugrYvGdl/4HzjYffhWdeAgzQe7aWrvpqdv8NlrwwyS/EH/hTMm8OWzJw5XNw9ToIuI9GNmxEVFEBcVwfiPn805KOcc7V29R4T94Vv7kc+H8tfFiVCgi4gMAzMjPjqC+OgIxqXEelKDvtIlIhIkFOgiIkFCgS4iEiQU6CIiQUKBLiISJBToIiJBQoEuIhIkFOgiIkHC3EDTlo3GG5vVArtP8OUZQN0wlhMI1OfQoD6HhpPp8wTnXOZAKzwL9JNhZiXOuWKv6xhN6nNoUJ9Dw0j1WUMuIiJBQoEuIhIkAjXQ7/G6AA+oz6FBfQ4NI9LngBxDFxGRjwvUPXQRETmKAl1EJEgEXKCb2cVmtt3MSs3sdq/rGU5mVm5mm8xsvZmV+JelmdmrZvah/z61X/vv+j+H7WZ2kXeVD52Z3WdmNWa2ud+y4+6jmc33f1alZvZrG+mLNZ6gQfr7QzPb69/O681sWb91Ad1fADPLN7PXzGybmW0xs2/4lwfzdh6sz6O7rZ1zAXMDwoGdwEQgCtgAzPC6rmHsXzmQcdSynwG3+x/fDtzhfzzD3/9ooMj/uYR73Ych9HEJcBqw+WT6CLwHLAIMeAlY6nXfjqO/PwT+eYC2Ad9ff625wGn+x4nADn/fgnk7D9bnUd3WgbaHfjpQ6pwrc851AY8Byz2uaaQtBx70P34QuLzf8secc53OuV1AKb7PZ0xzzr0BNBy1+Lj6aGa5QJJz7m3n+x/wh36vGVMG6e9gAr6/AM65fc65df7HLcA2II/g3s6D9XkwI9LnQAv0PKCi3/NKjv2hBRoHvGJma83sJv+ybOfcPvD9owGy/MuD6bM43j7m+R8fvTyQfM3MNvqHZA4NPQRdf82sEJgHvEuIbOej+gyjuK0DLdAHGksKpvMuz3TOnQYsBW41syXHaBvsnwUM3sdA7/t/AZOAucA+4Of+5UHVXzNLAJ4Evumcaz5W0wGWBWS/B+jzqG7rQAv0SiC/3/PxQJVHtQw751yV/74GeBrfEEq1/88w/Pc1/ubB9Fkcbx8r/Y+PXh4QnHPVzrle51wf8Hs+GioLmv6aWSS+YHvYOfeUf3FQb+eB+jza2zrQAn0NMMXMiswsClgBPOdxTcPCzOLNLPHQY+BCYDO+/l3vb3Y98Kz/8XPACjOLNrMiYAq+gymB6Lj66P9zvcXMzvCfAXBdv9eMeYdCze8KfNsZgqS//hr/G9jmnPtFv1VBu50H6/Oob2uvjw6fwNHkZfiOIO8Evud1PcPYr4n4jnpvALYc6huQDvwN+NB/n9bvNd/zfw7bGaNH/wfo56P4/vTsxrc3cuOJ9BEo9v/n2Anchf9bz2PtNkh/HwI2ARv9/7Fzg6W//lrPwjdMsBFY778tC/LtPFifR3Vb66v/IiJBItCGXEREZBAKdBGRIKFAFxEJEgp0EZEgoUAXEQkSCnQRkSChQBcRCRL/H8ta8BDwJc51AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"neural_nets.gradient_descent()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9281c6e1",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand Down

0 comments on commit 9437e95

Please sign in to comment.