Skip to content

Commit

Permalink
v0.3 updates
Browse files Browse the repository at this point in the history
- CHANGELOG and version increment.
- Updates.
  • Loading branch information
msuzen committed Mar 5, 2024
1 parent ba6a682 commit 4ebd174
Show file tree
Hide file tree
Showing 5 changed files with 111 additions and 62 deletions.
9 changes: 9 additions & 0 deletions CHANGELOG
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
0.3.0
* New books: Chernozhukov et. al. (2024), Hurwitz-Thompson (2023).
* Logo: Penrose meets Pearl.
* Nobel Memorial Prize 2021, Laureates names.
* Datasets Hunninton-Klein R package.
* Software section clean-up: Sub-sections.
* Additional conference links.
* Simpson's paradox section updates.
* MOOC; mixsessions.io Course material.
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,11 @@
# looper : A resource list for causality in statistics, data science and physics

<p align="left">
<img src="assets/pearl_penrose.jpg" width="250" title="Penrose meets Pearl (2021)">
<small>Penrose meets Pearl, (c) 2021</small>
</p>


Our honour to be mentioned by Judea Pearl on [twitter](https://twitter.com/ceobillionaire/status/1388630546797023232).

```
Expand Down
2 changes: 1 addition & 1 deletion VERSION
Original file line number Diff line number Diff line change
@@ -1 +1 @@
0.2.9
0.3.0
Binary file added assets/pearl_penrose.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
156 changes: 95 additions & 61 deletions looper.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# `A resource list for causality in statistics, data science and physics.`
# [A resource list for causality in statistics, data science and physics](https://github.com/msuzen/looper)

##### Table of Contents
[Editor's Selection](#editors-selection).
Expand Down Expand Up @@ -41,10 +41,12 @@ Order from beginner to advanced.
Causal Inference in Statistics: A Primer (2016).
[amzn](https://www.amzn.com/dp/1119186846).
[Ch4-pdf](http://web.cs.ucla.edu/~kaoru/primer-ch4.pdf).
[tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
[tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
Self-study by Bruno Goncalves [github](https://github.com/DataForScience/Causality)

* Nobel Memorial Economics Prize 2021 on causal discovery, scientific summary.
Answering Causal Questions Using Observational Data.
Answering Causal Questions Using Observational Data. (2021)
(David Card, Joshua Angrist, and Guido Imbens)
[pdf](https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf).

* Causality, determinism, and physics.
Expand Down Expand Up @@ -159,7 +161,8 @@ Reverse chronological order, both technical and popular.
Causal Inference in Statistics: A Primer (2016).
[amzn](https://www.amzn.com/dp/1119186846).
[Ch4-pdf](http://web.cs.ucla.edu/~kaoru/primer-ch4.pdf).
[tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
[tweet-solution-manual](https://twitter.com/yudapearl/status/1484023795811696642).
Self-study by Bruno Goncalves [github](https://github.com/DataForScience/Causality)

* Mastering 'Metrics: The Path from Cause to Effect. (2015).
Angrist, J.D. and J.-S.Pischke.
Expand Down Expand Up @@ -401,10 +404,10 @@ Reverse chronological order, both technical and popular.
`potential outcomes`

* Causal diagrams for empirical research.
Judea Pearl (1995).
Judea Pearl (1995).
[jstor](https://www.jstor.org/stable/2337329) | [pdf-UCLA](http://bayes.cs.ucla.edu/R218-B.pdf).
`Reasoning on Graphs: d-seperation, back/front-door`

* Identification and Estimation of Local Average Treatment Effects.
Joshua D. Angrist & Guido W. Imbens.
[nber](https://www.nber.org/papers/t0118) (1995).
Expand Down Expand Up @@ -473,8 +476,9 @@ Reverse chronological order, both technical and popular.
[arXiv](https://arxiv.org/abs/2011.14821) (2021).

* Nobel Memorial Economics Prize 2021 on causal discovery, scientific summary.
Answering Causal Questions Using Observational Data.
[pdf](https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf).
Answering Causal Questions Using Observational Data. (2021)
(David Card, Joshua Angrist, and Guido Imbens)
[pdf](https://www.nobelprize.org/uploads/2021/10/advanced-economicsciencesprize2021.pdf).

* Causal network reconstruction from time series: From theoretical assumptions to practical estimation.
J. Runge.
Expand All @@ -499,6 +503,12 @@ Reverse chronological order, both technical and popular.
KDD '23: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
August 2023, Pages 5092–5103 [doi](https://doi.org/10.1145/3580305.3599859) | [git-repository](https://github.com/ant-research/Learning-to-Discover-Various-Simpson-Paradoxes)

* A toolbox to demystify probabilistic and statistical paradoxes.
Kelter R, Schnurr A and Spies S (2023)
Front. Educ. 8:1212419. [doi](https://doi.org/10.3389/feduc.2023.1212419) | [author-pdf](https://dspace.ub.uni-siegen.de/bitstream/ubsi/2578/3/A_toolbox_to_demystify_probabilistic_and_statistical_paradoxes.pdf)

* Pearl, J. (2014). Comment: understanding Simpson’s paradox. Am. Stat. 68, 8–13. doi: 10.1080/00031305.2014.876829

* Simpson's Paradox: An Anatomy
Judea Pearl (1999).
[UCLA Technical-Report](http://bayes.cs.ucla.edu/R264.pdf)
Expand All @@ -508,6 +518,10 @@ Reverse chronological order, both technical and popular.
Journal of the American Statistical Association.
Vol. 67, No. 338 (Jun., 1972), pp. 364-366. [doi](https://doi.org/10.2307/2284382)

* The interpretation of interaction in contingency tables.
Simpson, E. H. (1951).
J. Royal Stat. Soc. 13, 238–241. [doi](https://dx.doi.org/10.1111/J.2517-6161.1951.TB00088.X)

## Machine Learning
Including games, reinforcement or deep learning, LLMs

Expand Down Expand Up @@ -659,39 +673,30 @@ Including games, reinforcement or deep learning, LLMs

## Software.

* R Universe: [CRAN Task View Causal Inference](https://cran.r-project.org/web/views/CausalInference.html)
### Causal Discovery

* auto-causality [github](https://github.com/transferwise/auto-causality).
* Causal-learn: Causal Discovery in Python
Spirtes & CMU & Team
[arXiv](https://arxiv.org/abs/2307.16405) | [repo](https://github.com/py-why/causal-learn)

* Primier, self-study by Bruno Goncalves [github](https://github.com/DataForScience/Causality)
* Tigramite – Causal inference and causal discovery for time series datasets.
[github](https://github.com/jakobrunge/tigramite)

* cause2e: A Python package for end-to-end causal analysis.
[github](https://github.com/MLResearchAtOSRAM/cause2e).
* The Causal Discovery Toolbox (CDT)
A package for causal inference in graphs and in the pairwise settings.
[github](https://github.com/FenTechSolutions/CausalDiscoveryToolbox). | [arXiv](https://arxiv.org/abs/1903.02278)

* Causal-learn: Causal Discovery in Python
Spirtes & CMU & Team
[arXiv](https://arxiv.org/abs/2307.16405) | [repo](https://github.com/py-why/causal-learn)
* LinGAM Discovery of non-gaussian linear causal models [github](https://github.com/cdt15/lingam) | [software paper](https://jmlr.org/papers/v24/21-0321.html) | [original paper](https://www.jmlr.org/papers/v7/shimizu06a.html)

* The Causal Discovery Toolbox.
A package for causal inference in graphs and in the pairwise settings.
[github](https://github.com/FenTechSolutions/CausalDiscoveryToolbox).

* upliftml : Uplift modelling, Booking.com
[github](https://github.com/bookingcom/upliftml)

* DoubleML in Python/R package [github](https://github.com/DoubleML/doubleml-for-py).

* pgmpy is a pure python implementation for Bayesian Networks [www](https://pgmpy.org) | [Paper-ArXiv](https://arxiv.org/abs/2304.08639) |
* PyPhi: A toolbox for integrated information theory.
[pypi](https://pypi.org/project/pyphi/).
[arXiv1712.09644](https://arxiv.org/abs/1712.09644)

* PyCID: Causal Influence Diagrams library [github](https://github.com/causalincentives/pycid)
(Relevant to PyCID : A python library for 2 player games [nashpy](https://github.com/drvinceknight/nashpy)
* Causal-tune [github](https://github.com/py-why/causaltune).

* LinGAM Discovery of non-gaussian linear causal models [github](https://github.com/cdt15/lingam) | [software paper](https://jmlr.org/papers/v24/21-0321.html) | [original paper](https://www.jmlr.org/papers/v7/shimizu06a.html)
* Huawei's gCastle is a causal structure learning toolchain [github-repo](https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle)

* (synthdid: Synthetic Difference in Differences Estimation)[https://synth-inference.github.io/synthdid/index.html].
R-package

* Microsoft Research:
### Microsoft Research : PyWhy

* PyWhy organisation [github](https://github.com/py-why/).
[DoWhy evolves to independent PyWhy model to help causal inference grow](https://www.microsoft.com/en-us/research/blog/dowhy-evolves-to-independent-pywhy-model-to-help-causal-inference-grow/?OCID=msr_blog_PyWhy_TW) | [aws-blog](https://www.amazon.science/blog/aws-contributes-novel-causal-machine-learning-algorithms-to-dowhy)
Expand All @@ -714,57 +719,85 @@ Including games, reinforcement or deep learning, LLMs
* Causica : DECI: End to End Causal Inference
[github](https://github.com/microsoft/causica)

* [CausalNex](https://github.com/quantumblacklabs/causalnex) A toolkit for causal reasoning with Bayesian Networks
from Quantumblack.
* Causal-learn: Causal Discovery in Python
Spirtes & CMU & Team
[arXiv](https://arxiv.org/abs/2307.16405) | [repo](https://github.com/py-why/causal-learn)

* CausalML: A Python Package for Uplift Modeling and Causal Inference with ML.
[github](https://github.com/uber/causalml) | [software X paper](https://doi.org/10.1016/j.softx.2022.101294)
* llm experimental [pywhy-llm](https://github.com/py-why/pywhy-llm)

* Tigramite – Causal inference and causal discovery for time series datasets.
[github](https://github.com/jakobrunge/tigramite)

* IBM's causalib Python package [github](https://github.com/IBM/causallib)
### Causal Impact and Observational

* Huawei's gCastle is a causal structure learning toolchain [github-repo](https://github.com/huawei-noah/trustworthyAI/tree/master/gcastle)
* DoubleML in Python/R package [github](https://github.com/DoubleML/doubleml-for-py). | [JSS-article](https://www.jstatsoft.org/article/view/v108i03)

* [CausalPy](https://github.com/pymc-labs/CausalPy) : Bayesian -regression discontinuity |
[pymc-lab](https://www.pymc-labs.io)

* [Identifying Causal Effects with the R Package causaleffect](https://cran.r-project.org/web/packages/causaleffect/vignettes/causaleffect.pdf)

* dagR: Directed Acyclic Graph with R.
[CRAN](https://cran.r-project.org/web/packages/dagR/index.html)[doi](http://dx.doi.org/10.1097/EDE.0b013e3181e09112)
* CausalML: A Python Package for Uplift Modeling and Causal Inference with ML.
[github](https://github.com/uber/causalml) | [software X paper](https://doi.org/10.1016/j.softx.2022.101294)

* An R package for causal inference using Bayesian structural time-series models
* An R package for causal inference using Bayesian structural time-series models
[CausalImpact](https://google.github.io/CausalImpact/CausalImpact.html).
[CRAN](https://cran.r-project.org/package=CausalImpact).
[github-python-port](https://github.com/jamalsenouci/causalimpact).
[paper](https://research.google/pubs/pub41854/).
[causalimpact-tf](https://github.com/WillianFuks/tfcausalimpact) Re-write with tensorflow probability

* Python package [causalinference](https://github.com/laurencium/causalinference) | [web](https://causalinferenceinpython.org).
[Vignette](https://github.com/laurencium/causalinference/blob/master/docs/tex/vignette.pdf)
* upliftml : Uplift modelling, Booking.com
[github](https://github.com/bookingcom/upliftml)

* Tetrad Project: Graphical Causal Models
[url](http://www.phil.cmu.edu/tetrad/)
* [Identifying Causal Effects with the R Package causaleffect](https://cran.r-project.org/web/packages/causaleffect/vignettes/causaleffect.pdf)

* PyPhi: A toolbox for integrated information theory.
[pypi](https://pypi.org/project/pyphi/).
[arXiv1712.09644](https://arxiv.org/abs/1712.09644)
* IBM's causalib Python package [github](https://github.com/IBM/causallib)

* (synthdid: Synthetic Difference in Differences Estimation)[https://synth-inference.github.io/synthdid/index.html].
R-package

### Causal Graphs and Bayesian Networks

* DAGitty — draw and analyze causal diagrams [url](https://www.dagitty.net)

* CausalQueries: Make, Update, and Query Binary Causal Models
[CRAN](https://cran.rstudio.com/web/packages/CausalQueries/index.html) | [book: Causal Models: Guide to CausalQueries](https://macartan.github.io/causalmodels/)

* pgmpy is a pure python implementation for Bayesian Networks [www](https://pgmpy.org) | [Paper-ArXiv](https://arxiv.org/abs/2304.08639) |

* causaleffect: Deriving Expressions of Joint Interventional Distributions and Transport Formulas in Causal Models.
[CRAN](https://cran.r-project.org/web/packages/causaleffect/index.html).
* GRAPHL [repo](https://github.com/max-little/GRAPL) | [joss](https://joss.theoj.org/papers/10.21105/joss.04534.pdf)

* dagR: Directed Acyclic Graph with R.
[CRAN](https://cran.r-project.org/web/packages/dagR/index.html)[doi](http://dx.doi.org/10.1097/EDE.0b013e3181e09112)

* PyCID: Causal Influence Diagrams library [github](https://github.com/causalincentives/pycid)
Relevant to PyCID : A python library for 2 player games [nashpy](https://github.com/drvinceknight/nashpy)

* [CausalPy](https://github.com/pymc-labs/CausalPy) : Bayesian -regression discontinuity |
[pymc-lab](https://www.pymc-labs.io)

* causaleffect: Deriving Expressions of Joint Interventional Distributions and Transport Formulas in Causal Models.
[CRAN](https://cran.r-project.org/web/packages/causaleffect/index.html).
* GRAPHL [repo](https://github.com/max-little/GRAPL) | [joss](https://joss.theoj.org/papers/10.21105/joss.04534.pdf)
* [CausalNex](https://github.com/quantumblacklabs/causalnex) A toolkit for causal reasoning with Bayesian Networks
from Quantumblack.

* Tetrad Project: Graphical Causal Models
[url](http://www.phil.cmu.edu/tetrad/)

### Views

* R Universe: [CRAN Task View Causal Inference](https://cran.r-project.org/web/views/CausalInference.html)

## Datasets

* R causaldata
Nick Huntington-Klein, Malcolm Barrett
Example dataset from some of the Causality textbooks
[github](https://github.com/NickCH-K/causaldata) | [cran](https://cran.r-project.org/web/packages/causaldata/index.html)

* Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks.
Joris M. Mooij, Jonas Peters, Dominik Janzing, Jakob Zscheischler, Bernhard Schölkopf;
17(32):1−102, (2016). [jmlr-paper](https://jmlr.org/papers/v17/14-518.html).
Database with cause-effect pairs [url](https://webdav.tuebingen.mpg.de/cause-effect/).

## MOOCs

* Mixtape sessions [url](https://www.mixtapesessions.io)
Free Course Material

* A Crash Course in Causality: Inferring Causal Effects from Observational Data.
[url](https://www.coursera.org/learn/crash-course-in-causality)

Expand Down Expand Up @@ -896,5 +929,6 @@ including discussions

* [Causal Science](https://www.causalscience.org)
* Counterfactual reasoning: From minds to machines to practical applications.
ICML Workshop [url](https://sites.google.com/view/counterfactuals-icml/home) (2023)
ICML Workshop [url](https://sites.google.com/view/counterfactuals-icml/home) (2023)
* Neurips 2023: Causal Representation Learning (CRL) [url](https://neurips.cc/virtual/2023/workshop/66497)

0 comments on commit 4ebd174

Please sign in to comment.