Skip to content
/ reef Public

πŸ₯ˆ2nd Place @ Internet of Agents Hackathon (NYC) - Reef is a visual AI agent builder that converts conversational prompts into production-ready multi-agent workflows, orchestrating complex tasks through distributed AI agents with real-time collaboration via Coral Protocol runtime.

Notifications You must be signed in to change notification settings

mousberg/reef

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Langing Page

Reef - AI Agent Workflow Platform

"Lovable for AI Agents" - A comprehensive platform for building, deploying, and managing AI agent workflows effortlessly. Reef enables users to create intelligent multi-agent systems through natural language interfaces and visual workflow builders.

πŸš€ Overview

Reef Architecture Reef consists of two main components that work together to provide a complete AI agent workflow solution:

  • Frontend - A Next.js web application providing user interfaces for project management, AI chat, and visual workflow design
  • Coral Factory - A FastAPI-based backend system for creating, configuring, and deploying AI agent workflows with containerized execution

Key Features

  • πŸ€– Natural Language Workflow Creation - Build complex agent workflows through conversational AI
  • 🎨 Visual Workflow Designer - Interactive canvas for designing agent relationships and data flow
  • πŸ”’ User Authentication - Firebase-powered secure user management
  • πŸ“Š Real-time Monitoring - Live trace viewing and performance analytics
  • 🐳 Containerized Deployment - Docker-based agent deployment and orchestration
  • πŸ› οΈ Tool Integration - Extensive toolkit for agent capabilities via Arcade
  • ☁️ Scalable Architecture - Multi-agent coordination with Kotlin-based orchestration

πŸ“Έ Screenshots

Entering Prompt

Tools Overview

Execute Workflow

Traces View

πŸ—οΈ Project Structure

reef/
β”œβ”€β”€ frontend/                    # Next.js Web Application
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ app/                # Next.js App Router pages
β”‚   β”‚   β”œβ”€β”€ components/         # React components (UI, workflow, chat)
β”‚   β”‚   β”œβ”€β”€ contexts/           # Authentication and state management
β”‚   β”‚   β”œβ”€β”€ lib/               # Utilities and Firebase configuration
β”‚   β”‚   └── types/             # TypeScript type definitions
β”‚   β”œβ”€β”€ public/                # Static assets
β”‚   └── README.md              # Frontend documentation
β”œβ”€β”€ coral_factory/              # AI Agent Workflow Backend
β”‚   β”œβ”€β”€ app.py                 # FastAPI server with authentication
β”‚   β”œβ”€β”€ factory/               # Workflow creation engine
β”‚   β”‚   β”œβ”€β”€ from_json.py       # Core workflow generation logic
β”‚   β”‚   └── name_less/         # Agent templates
β”‚   β”œβ”€β”€ hosting/               # Docker deployment system
β”‚   β”‚   β”œβ”€β”€ main.py           # Container orchestration
β”‚   β”‚   └── shared/           # Coral server and shared resources
β”‚   └── README.md             # Backend documentation
└── README.md                 # This file

🎨 Frontend - Web Application

The user-facing web application built with modern React technologies:

Core Technologies:

  • Next.js 15 with App Router and TypeScript
  • Tailwind CSS with custom design system
  • shadcn/ui components built on Radix UI
  • Firebase for authentication and real-time data
  • AI SDK for LLM integration
  • React Flow for workflow visualization

Key Features:

  • Landing page with feature showcase
  • User authentication and project management
  • AI-powered chat interface for workflow creation
  • Visual workflow canvas with drag-and-drop
  • Real-time trace viewer for monitoring
  • Responsive design for all devices

βš™οΈ Coral Factory - Backend System

The AI agent workflow creation and deployment backend:

Core Technologies:

  • FastAPI server with bearer token authentication
  • Python-based workflow generation engine
  • Docker containerization with compose orchestration
  • Kotlin coral-server for agent coordination
  • Firebase integration for tracing
  • OpenAI Agents SDK for LLM workflows

Key Features:

  • JSON-to-workflow conversion system
  • Template-based agent generation
  • Dynamic Docker deployment
  • Multi-agent coordination and communication
  • Tool integration via Arcade toolkit
  • Real-time execution monitoring

πŸ›οΈ System Architecture

Reef follows a microservices architecture with clear separation of concerns:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    API Calls    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚ ───────────────> β”‚                      β”‚
β”‚   Frontend      β”‚                  β”‚   Coral Factory      β”‚
β”‚   (Next.js)     β”‚ <─────────────── β”‚   (FastAPI)          β”‚
β”‚                 β”‚   WebSocket      β”‚                      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   Updates        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                                        β”‚
         β”‚ Firebase Auth                          β”‚ Docker Compose
         β”‚ & Firestore                           β”‚
         β–Ό                                        β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                 β”‚                  β”‚  Agent Containers    β”‚
β”‚   Firebase      β”‚                  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚   - Auth        β”‚                  β”‚  β”‚ Coral Server    β”‚ β”‚
β”‚   - Firestore   β”‚ <───────────────── β”‚ (Kotlin)        β”‚ β”‚
β”‚   - Tracing     β”‚    Trace Data    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                 β”‚                  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                  β”‚  β”‚ Research Agents β”‚ β”‚
                                     β”‚  β”‚ (Python)        β”‚ β”‚
                                     β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
                                     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Data Flow

  1. User Interaction - Users interact with the frontend to create projects and workflows
  2. Workflow Creation - Frontend sends workflow configs to Coral Factory via API
  3. Agent Generation - Coral Factory converts configs to executable agent code
  4. Deployment - Docker containers are created and orchestrated for each workflow
  5. Execution - Agents run in containers, communicating through Coral Server
  6. Monitoring - Real-time traces sent to Firebase, displayed in frontend

πŸš€ Quick Start

Prerequisites

  • Node.js 18+ and npm/bun
  • Python 3.8+
  • Docker and Docker Compose
  • Firebase project (for auth and database)
  • OpenAI API key

Development Setup

  1. Clone the repository:

    git clone <repository-url>
    cd reef
  2. Set up Frontend:

    cd frontend
    cp env_example .env.local
    # Configure Firebase and OpenAI keys in .env.local
    npm install
    npm run dev

    Frontend available at: http://localhost:3000

  3. Set up Coral Factory:

    cd coral_factory
    python3 -m venv venv
    source venv/bin/activate
    pip install fastapi uvicorn pydantic python-dotenv pyyaml toml
    # Configure environment variables
    uvicorn app:app --host 0.0.0.0 --port 8001

    Backend available at: http://localhost:8001

πŸ“š Documentation

Each component has detailed documentation:

🚒 Production Deployment

Frontend Deployment (Vercel)

cd frontend
npm run build
# Deploy to Vercel with environment variables configured

Backend Deployment (Docker)

cd coral_factory
# Configure production environment variables
docker-compose up -d
# Or deploy to cloud provider with Docker support

Environment Configuration

Ensure the following are configured in production:

  • Firebase project with Authentication and Firestore enabled
  • OpenAI API key for LLM capabilities
  • Mistral API key (optional, for alternative models)
  • Arcade API key for tool integrations
  • Docker environment for agent execution

🀝 Contributing

We welcome contributions to Reef! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes following the existing code style
  4. Test your changes thoroughly
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

Development Guidelines

  • Follow TypeScript best practices in frontend code
  • Use proper type definitions and error handling
  • Write clear commit messages
  • Update documentation for new features
  • Test both frontend and backend integration

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™‹β€β™‚οΈ Support

For questions, issues, or feature requests:

  • Open an issue on GitHub
  • Check the component-specific README files for detailed documentation
  • Review the system architecture section for understanding component interactions

About

πŸ₯ˆ2nd Place @ Internet of Agents Hackathon (NYC) - Reef is a visual AI agent builder that converts conversational prompts into production-ready multi-agent workflows, orchestrating complex tasks through distributed AI agents with real-time collaboration via Coral Protocol runtime.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published