A fast and efficient Linear Programming (LP) Solver implemented in Rust, designed to solve optimization problems using the Simplex Algorithm.
- Fast & Efficient: Optimized implementation of the Simplex Algorithm for solving LP problems.
- User-Friendly API: Designed for ease of use with a clean and intuitive API.
- Custom Constraints & Objectives: Define your own constraints and objective functions effortlessly.
- Scalable & Reliable: Suitable for large-scale linear programming problems.
install via Cargo:
cargo add rustplex
use rustplex::core::{constraint::ConstraintSense, model::Model, objective::ObjectiveSense};
fn main() {
let mut model = Model::new();
let x1 = model.add_variable().name("x1").bounds(1.0..=5.0);
let x2 = model.add_variable().name("x2").upper_bound(2.0);
let x3 = model.add_variable().name("x3");
model.set_objective(ObjectiveSense::Maximize, &x1 + &x2 + &x3);
model
.add_constraint(&x1, ConstraintSense::LessEqual, 10)
.name("constr1");
model
.add_constraint(&x2 + &x3, ConstraintSense::LessEqual, 5)
.name("constr2");
model.solve();
println!("{}", model.get_solution());
}
Output:
Solver Status: Optimal
Objective Value: 10.00
Variable Values: [
Var(x2): 2.00
Var(x3): 3.00
Var(x1): 5.00
]
Iterations: 3
Solve Time: 18.10µs
Contributions are welcome! Feel free to fork, submit issues, or open pull requests.
This project is licensed under the terms of both the MIT license and the Apache License (Version 2.0).
See LICENSE-MIT and LICENSE-APACHE for details.
Developed with ❤️ in Rust.