Skip to content

Prediction of intensity or degree of the emotion of the given text.

Notifications You must be signed in to change notification settings

mohdahmad242/EmoInt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Dataset - Here

For this repository we have used Anger and Joy classes.

All dataset can be downloaded from the above website.

-----------------------------------Approachs------------------------------------------

Two approachs.

  1. Based on dataset.
    a. First used Raw data.
    b. Pre-processed all dataset.(Explained Below)

  2. Based on Vocabulary
    a. Used simple Stopword to create TfidfVectorizer.
    b. Used cutome Vocabulary created using unigrams and bigrams from tweet data.
    c. Used Twitter Glove Embedding.

-----------------------------------Models--------------------------------------------

Three model

  1. Random Forest Regressor.
  2. SVM.
  3. Simple MLP using keras(run for 100 epochs).

All code implemention is given in Jupyter notebook with relevent comments.

-----------------------------------Results-------------------------------------------

Following are the best result obtain in test set for each approach.

For Anger Dataset

  1. Without Pre-processing.
    a. simple Stopword.

        Best result - Random Forest
                metrics     Value
        0          Pearsonr  0.247100
        1         Spearmanr  0.222550
        2   Pearsonr >= 0.5  0.136760
        3  Spearmanr >= 0.5  0.109948    
    

    b. cutome Vocabulary.

        Best result - Random Forest
                 metrics     Value
        0          Pearsonr  0.536161
        1         Spearmanr  0.504543
        2   Pearsonr >= 0.5  0.400112
        3  Spearmanr >= 0.5  0.363594
    

    c. Twitter Glove Embedding.

        Best result - SVM
              metrics     Value
        0          Pearsonr  0.586624
        1         Spearmanr  0.580586
        2   Pearsonr >= 0.5  0.429999
        3  Spearmanr >= 0.5  0.424292
    
  2. With Pre-processing a. simple Stopword.

        Best result - Random Forest
                       metrics     Value
        0          Pearsonr  0.243917
        1         Spearmanr  0.217084
        2   Pearsonr >= 0.5  0.128100
        3  Spearmanr >= 0.5  0.110319
       ```
    b. cutome Vocabulary.
    
     Best result - Random Forest
                 metrics     Value
     0          Pearsonr  0.535899
     1         Spearmanr  0.504324
     2   Pearsonr >= 0.5  0.399039
     3  Spearmanr >= 0.5  0.360943
     ```
    

    c. Twitter Glove Embedding.

        Best result - SVM
                    metrics     Value
        0          Pearsonr  0.587715
        1         Spearmanr  0.581532
        2   Pearsonr >= 0.5  0.432472
        3  Spearmanr >= 0.5  0.426328
        ```
        
    

For Joy Dataset

  1. Without Pre-processing. a. simple Stopword.
        Best result - Random Forest
                    metrics     Value
        0          Pearsonr  0.312417
        1         Spearmanr  0.309787
        2   Pearsonr >= 0.5  0.154492
        3  Spearmanr >= 0.5  0.160097
        ```
    b. cutome Vocabulary.
    
     Best result - SVM
                 metrics     Value
     0          Pearsonr  0.474524
     1         Spearmanr  0.494809
     2   Pearsonr >= 0.5  0.308389
     3  Spearmanr >= 0.5  0.307756
     ```
    
    c. Twitter Glove Embedding.
        Best result - SVM
                metrics     Value
        0          Pearsonr  0.606882
        1         Spearmanr  0.604149
        2   Pearsonr >= 0.5  0.449256
        3  Spearmanr >= 0.5  0.442449
        ```
    
    
  2. With Pre-processing a. simple Stopword.
        Best result - Random Forest
            metrics     Value
        0          Pearsonr  0.257611
        1         Spearmanr  0.256136
        2   Pearsonr >= 0.5  0.157086
        3  Spearmanr >= 0.5  0.154409
        ```
    b. cutome Vocabulary.
    
     Best result - SVM
                 metrics     Value
     0          Pearsonr  0.482738
     1         Spearmanr  0.499942
     2   Pearsonr >= 0.5  0.310332
     3  Spearmanr >= 0.5  0.323588
     ```
    
    c. Twitter Glove Embedding.
        Best result - SVM
                 metrics     Value
        0          Pearsonr  0.579386
        1         Spearmanr  0.576765
        2   Pearsonr >= 0.5  0.382190
        3  Spearmanr >= 0.5  0.382472
        ```
    

Releases

No releases published

Packages

No packages published