forked from facebookresearch/mbrl-lib
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PID code and Update Readme (facebookresearch#165)
* clean PID implementation * minor text changes * make batch friendly, add tests * lint tests * make tests deterministic * fix docstring * add colab to readme * clean PR for mbrl-lib
- Loading branch information
Nathan Lambert
authored
Sep 12, 2022
1 parent
87008d0
commit 7dbca52
Showing
4 changed files
with
209 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
from typing import Optional | ||
|
||
import numpy as np | ||
|
||
from .core import Agent | ||
|
||
|
||
class PIDAgent(Agent): | ||
""" | ||
Agent that reacts via an internal set of proportional–integral–derivative controllers. | ||
A broad history of the PID controller can be found here: | ||
https://en.wikipedia.org/wiki/PID_controller. | ||
Args: | ||
k_p (np.ndarry): proportional control coeff (Nx1) | ||
k_i (np.ndarry): integral control coeff (Nx1) | ||
k_d (np.ndarry): derivative control coeff (Nx1) | ||
target (np.ndarry): setpoint (Nx1) | ||
state_mapping (np.ndarry): indices of the state vector to apply the PID control to. | ||
E.g. for a system with states [angle, angle_vel, position, position_vel], state_mapping | ||
of [1, 3] and dim of 2 will apply the PID to angle_vel and position_vel variables. | ||
batch_dim (int): number of samples to compute actions for simultaneously | ||
""" | ||
|
||
def __init__( | ||
self, | ||
k_p: np.ndarray, | ||
k_i: np.ndarray, | ||
k_d: np.ndarray, | ||
target: np.ndarray, | ||
state_mapping: Optional[np.ndarray] = None, | ||
batch_dim: Optional[int] = 1, | ||
): | ||
super().__init__() | ||
assert len(k_p) == len(k_i) == len(k_d) == len(target) | ||
self.n_dof = len(k_p) | ||
|
||
# State mapping defaults to first N states | ||
if state_mapping is not None: | ||
assert len(state_mapping) == len(target) | ||
self.state_mapping = state_mapping | ||
else: | ||
self.state_mapping = np.arange(0, self.n_dof) | ||
|
||
self.batch_dim = batch_dim | ||
|
||
self._prev_error = np.zeros((self.n_dof, self.batch_dim)) | ||
self._cum_error = np.zeros((self.n_dof, self.batch_dim)) | ||
|
||
self.k_p = np.repeat(k_p[:, np.newaxis], self.batch_dim, axis=1) | ||
self.k_i = np.repeat(k_i[:, np.newaxis], self.batch_dim, axis=1) | ||
self.k_d = np.repeat(k_d[:, np.newaxis], self.batch_dim, axis=1) | ||
self.target = np.repeat(target[:, np.newaxis], self.batch_dim, axis=1) | ||
|
||
def act(self, obs: np.ndarray, **_kwargs) -> np.ndarray: | ||
"""Issues an action given an observation. | ||
This method optimizes a given observation or batch of observations for a | ||
one-step action choice. | ||
Args: | ||
obs (np.ndarray): the observation for which the action is needed either N x 1 or N x B, | ||
where N is the state dim and B is the batch size. | ||
Returns: | ||
(np.ndarray): the action outputted from the PID, either shape n_dof x 1 or n_dof x B. | ||
""" | ||
if obs.ndim == 1: | ||
obs = np.expand_dims(obs, -1) | ||
if len(obs) > self.n_dof: | ||
pos = obs[self.state_mapping] | ||
else: | ||
pos = obs | ||
|
||
error = self.target - pos | ||
self._cum_error += error | ||
|
||
P_value = np.multiply(self.k_p, error) | ||
I_value = np.multiply(self.k_i, self._cum_error) | ||
D_value = np.multiply(self.k_d, (error - self._prev_error)) | ||
self._prev_error = error | ||
action = P_value + I_value + D_value | ||
return action | ||
|
||
def reset(self): | ||
""" | ||
Reset internal errors. | ||
""" | ||
self._prev_error = np.zeros((self.n_dof, self.batch_dim)) | ||
self._cum_error = np.zeros((self.n_dof, self.batch_dim)) | ||
|
||
def get_errors(self): | ||
return self._prev_error, self._cum_error | ||
|
||
def _get_P(self): | ||
return self.k_p | ||
|
||
def _get_I(self): | ||
return self.k_i | ||
|
||
def _get_D(self): | ||
return self.k_d | ||
|
||
def _get_targets(self): | ||
return self.target | ||
|
||
def get_parameters(self): | ||
""" | ||
Returns the parameters of the PID agent concatenated. | ||
Returns: | ||
(np.ndarray): the parameters. | ||
""" | ||
return np.stack( | ||
(self._get_P(), self._get_I(), self._get_D(), self._get_targets()) | ||
).flatten() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
import mbrl.planning as planning | ||
|
||
|
||
def create_pid_agent(dim, | ||
state_mapping=None, | ||
batch_dim=1): | ||
agent = planning.PIDAgent(k_p=np.ones(dim, ), | ||
k_i=np.ones(dim, ), | ||
k_d=np.ones(dim, ), | ||
target=np.zeros(dim, ), | ||
state_mapping=state_mapping, | ||
batch_dim=batch_dim, | ||
) | ||
return agent | ||
|
||
|
||
def test_pid_agent_one_dim(): | ||
""" | ||
This test covers the creation of PID agents in the most basic form. | ||
""" | ||
pid = create_pid_agent(dim=1) | ||
pid.reset() | ||
init_obs = np.array([2.2408932]) | ||
act = pid.act(init_obs) | ||
|
||
# check action computation | ||
assert act == pytest.approx(-6.722, 0.1) | ||
|
||
# check reset | ||
pid.reset() | ||
prev_error, cum_error = pid.get_errors() | ||
assert np.sum(prev_error) == np.sum(cum_error) == 0 | ||
|
||
|
||
def test_pid_agent_multi_dim(): | ||
""" | ||
This test covers regular updates for the multi-dim PID agent. | ||
""" | ||
pid = create_pid_agent(dim=2, state_mapping=np.array([1, 3]), ) | ||
init_obs = np.array([ 0.95008842, -0.15135721, -0.10321885, 0.4105985 ]) | ||
act1 = pid.act(init_obs) | ||
next_obs = np.array([0.14404357, 1.45427351, 0.76103773, 0.12167502]) | ||
act2 = pid.act(next_obs) | ||
assert act1 + act2 == pytest.approx([-3.908, -1.596], 0.1) | ||
|
||
# check reset | ||
pid.reset() | ||
prev_error, cum_error = pid.get_errors() | ||
assert np.sum(prev_error) == np.sum(cum_error) == 0 | ||
|
||
|
||
def test_pid_agent_batch(batch_dim=5): | ||
""" | ||
Tests the agent for batch-mode computation of actions. | ||
""" | ||
pid = create_pid_agent(dim=2, state_mapping=np.array([1, 3]), batch_dim=batch_dim) | ||
|
||
init_obs = np.array([[ 0.95008842, -0.15135721, -0.10321885, 0.4105985 , 0.14404357], | ||
[ 1.45427351, 0.76103773, 0.12167502, 0.44386323, 0.33367433], | ||
[ 1.49407907, -0.20515826, 0.3130677 , -0.85409574, -2.55298982], | ||
[ 0.6536186 , 0.8644362 , -0.74216502, 2.26975462, -1.45436567]]) | ||
act1 = pid.act(init_obs) | ||
next_obs = np.array([[ 0.04575852, -0.18718385, 1.53277921, 1.46935877, 0.15494743], | ||
[ 0.37816252, -0.88778575, -1.98079647, -0.34791215, 0.15634897], | ||
[ 1.23029068, 1.20237985, -0.38732682, -0.30230275, -1.04855297], | ||
[-1.42001794, -1.70627019, 1.9507754 , -0.50965218, -0.4380743 ]]) | ||
act2 = pid.act(next_obs) | ||
assert (act1 + act2)[0] == pytest.approx([-5.497, 0.380, 5.577, -0.287, -1.470], 0.1) | ||
|
||
# check reset | ||
pid.reset() | ||
prev_error, cum_error = pid.get_errors() | ||
assert np.sum(prev_error) == np.sum(cum_error) == 0 |