Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions modin/pandas/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -517,22 +517,22 @@ def aggregate(self, func=None, axis=0, *args, **kwargs):

agg = aggregate

def _aggregate(self, arg, *args, **kwargs):
def _aggregate(self, func, *args, **kwargs):
_axis = kwargs.pop("_axis", 0)
kwargs.pop("_level", None)

if isinstance(arg, str):
if isinstance(func, str):
kwargs.pop("is_transform", None)
return self._string_function(arg, *args, **kwargs)
return self._string_function(func, *args, **kwargs)

# Dictionaries have complex behavior because they can be renamed here.
elif isinstance(arg, dict):
return self._default_to_pandas("agg", arg, *args, **kwargs)
elif is_list_like(arg) or callable(arg):
elif func is None or isinstance(func, dict):
return self._default_to_pandas("agg", func, *args, **kwargs)
elif is_list_like(func) or callable(func):
kwargs.pop("is_transform", None)
return self.apply(arg, axis=_axis, args=args, **kwargs)
return self.apply(func, axis=_axis, args=args, **kwargs)
else:
raise TypeError("type {} is not callable".format(type(arg)))
raise TypeError("type {} is not callable".format(type(func)))

def _string_function(self, func, *args, **kwargs):
assert isinstance(func, str)
Expand Down
12 changes: 12 additions & 0 deletions modin/pandas/test/dataframe/test_udf.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,18 @@
matplotlib.use("Agg")


def test_agg_dict():
md_df, pd_df = create_test_dfs(test_data_values[0])
agg_dict = {pd_df.columns[0]: "sum", pd_df.columns[-1]: ("sum", "count")}
eval_general(md_df, pd_df, lambda df: df.agg(agg_dict), raising_exceptions=True)

agg_dict = {
"new_col1": (pd_df.columns[0], "sum"),
"new_col2": (pd_df.columns[-1], "count"),
}
eval_general(md_df, pd_df, lambda df: df.agg(**agg_dict), raising_exceptions=True)


@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize(
"func",
Expand Down