Skip to content

Hunting the Known Unknown: Supply Chain Attacks (Splunk .conf 21 SEC1745C)

Notifications You must be signed in to change notification settings

mlaferrera/SEC1745

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Hunting the Known Unknown -- Software Supply Chain Attacks

Splunk .conf 2021 - SEC1745
Ryan Kovar (@meansec) and Marcus LaFerrera (@mlaferrera@mastodon.social)

Welcome to the supplemental information from the above talk. You'll find all of the queries we used, along with any references to code, apps, and perhaps more.

Queries

  • Overview of JA3/s hashes:

      sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
      | stats sparkline values(server_name) AS Domains, values(src_ip) as Clients, values(dest_ip) as Server count  by ja3, ja3s
      | sort count desc
    
  • Identify first seen by ja3, ja3s, src_ip, and server_name:

      sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
      | stats earliest(_time) as earliest latest(_time) as latest by ja3, ja3s, src_ip, server_name
      | eval maxlatest=now()  
      | eval isOutlier=if(earliest >= relative_time(maxlatest, "-1d@d"), 1, 0)
      | table ja3, ja3s, src_ip, server_name, earliest, latest, maxlatest, isOutlier
      | convert ctime(earliest) ctime(latest) ctime(maxlatest)
      | sort earliest desc
    
  • Find rarest ja3s by server_name:

      sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
      | stats earliest(_time) as earliest latest(_time) as latest by ja3, ja3s, src_ip, server_name
      | eval maxlatest=now()  
      | eval isOutlier=if(earliest >= relative_time(maxlatest, "-1d@d"), 1, 0)
      | table ja3, ja3s, src_ip, server_name, earliest, latest, maxlatest, isOutlier
      | convert ctime(earliest) ctime(latest) ctime(maxlatest)
      | sort earliest desc
    
  • Discover abnormal ja3s with anomalydetection:

      sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
      | anomalydetection method=histogram action=annotate pthresh=0.0001 src_ip, ja3, ja3s
      | stats sparkline max(log_event_prob) AS "Max Prob", min(log_event_prob) AS "Min Prob", values(probable_cause) AS "Probable Causes", values(dest_ip) AS "Dest IPs", values(server_name) AS "Server Names", values(ja3) AS "JA3", values(src_ip) as "Source IPs" count by ja3s
      | table "Server Names", "Probable Causes", "Max Prob", "Min Prob", "Dest IPs", ja3s, "JA3", "Source IPs", count
      | sort "Min Prob" asc
    
  • Homemade anomaly detection with outputlookup:

      sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
      | eval id=md5(src_ip+ja3+ja3s)
      | stats count by id,ja3,ja3s,src_ip
      | eventstats sum(count) as total_host_count by src_ip,ja3
      | eval hash_pair_likelihood=exact(count/total_host_count)
      | sort src_ip ja3 hash_pair_likelihood
      | streamstats sum(hash_pair_likelihood) as cumulative_likelihood by src_ip,ja3
      | eval log_cumulative_like=log(cumulative_likelihood)
      | eval log_hash_pair_like=log(hash_pair_likelihood)
      | outputlookup hash_count_by_host_baselines.csv
    
    • Then, using inputlookup to find anomalous activity:

        sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
        | eval id=md5(src_ip+ja3+ja3s)
        | lookup hash_count_by_host_baselines.csv id as id OUTPUT count, total_host_count,log_cumulative_like, log_hash_pair_like
        | table _time, src_ip, ja3s, server_name, subject, issuer, dest_ip, ja3, log_cumulative_like, log_hash_pair_like, count, total_host_count
        | sort log_hash_pair_like
      
    • Periodically, the lookup table must be updated to ensure probabilities are accurate

        sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
        | eval id=md5(src_ip+ja3+ja3s)
        | stats count by id,ja3,ja3s,src_ip
        | append 
            [| inputlookup hash_count_by_host_baselines.csv]
        | stats sum(count) as count by id,ja3,ja3s,src_ip
        | eventstats sum(count) as total_host_count by src_ip,ja3
        | eval hash_pair_likelihood=exact(count/total_host_count)
        | sort src_ip ja3 hash_pair_likelihood
        | streamstats sum(hash_pair_likelihood) as cumulative_likelihood by src_ip,ja3
        | eval log_cumulative_like=log(cumulative_likelihood)
        | eval log_hash_pair_like=log(hash_pair_likelihood)
        | outputlookup hash_count_by_host_baselines.csv
      
  • Discover abnormal ja3s and ASN context with anomalydetection:

      sourcetype="bro:ssl:json" ja3="*" ja3s="*" src_ip IN (192.168.70.0/24)
      | lookup asparse prefix as dest_ip
      | anomalydetection method=histogram action=filter pthresh=0.0001 src_ip, ja3, ja3s, asn, org.name, geo.country
      | stats max(log_event_prob) AS "Max Prob", min(log_event_prob) AS "Min Prob", values(probable_cause) AS "Probable Causes", values(dest_ip) AS "Dest IPs", values(server_name) AS "Server Names", values(ja3) AS "JA3", values(src_ip) as "Source IPs", values(geo.country) AS "Countries" count by asn, org.name, ja3s
      | table asn, org.name, Countries, "Server Names", "Probable Causes", "Max Prob", "Min Prob", "Dest IPs", ja3s, "JA3", "Source IPs", count
      | sort "Min Prob" ASC
    
  • Link JA3s hashes to Windows processes with sysmon:

      (source="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" EventCode=3 src_ip IN (192.168.70.0/24))
          OR 
      (sourcetype="bro:ssl:json" ja3=* ja3s=*) 
      | eval src_ip=if(sourcetype == "bro:ssl:json",'id.orig_h','src_ip') 
      | eval src_port=if(sourcetype == "bro:ssl:json",'id.orig_p','src_port') 
      | eval dest_ip=if(sourcetype == "bro:ssl:json",'id.resp_h','dest_ip') 
      | eval dest_port=if(sourcetype == "bro:ssl:json",'id.resp_p','dest_port') 
      | stats values(ja3) as ja3 values(ja3s) as ja3s values(process_path) as process_path values(server_name) as server_name by src_ip dest_ip dest_port 
      | search ja3=* ja3s=* process_path=* NOT process_path IN ("<unknown process>")
    
  • Same as above, but with datamodels:

      | multisearch 
          [ from datamodel:Network_Traffic.All_Traffic 
          | search sourcetype="xmlwineventlog" source="XmlWinEventLog:Microsoft-Windows-Sysmon/Operational" src_ip IN (192.168.70.0/24)
          | rename app as process_path] 
          [ search sourcetype="bro:ssl:json" ja3=* ja3s=*] 
      | eval src_ip=if(sourcetype == "bro:ssl:json",'id.orig_h','src_ip') 
      | eval src_port=if(sourcetype == "bro:ssl:json",'id.orig_p','src_port') 
      | eval dest_ip=if(sourcetype == "bro:ssl:json",'id.resp_h','dest_ip') 
      | eval dest_port=if(sourcetype == "bro:ssl:json",'id.resp_p','dest_port') 
      | stats count values(ja3) as ja3 values(ja3s) as ja3s values(process_path) as process_path, values(server_name) as server_name by src_ip dest_ip dest_port 
      | search ja3=* ja3s=* process_path=* NOT process_path IN ("<unknown process>")
    

Tools

  • asparser

    • A python library that can quickly generate ASN and Geolocation datasets
  • aiohec

    • An async python library to quickly ingest data into a Splunk index via the HTTP Event Collector and inserting data into Splunk KVStore.
  • zeekgen

    • A python script to generate synthentic Zeek TLS logs for attack simulation

Splunk Apps

About

Hunting the Known Unknown: Supply Chain Attacks (Splunk .conf 21 SEC1745C)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages