Skip to content

Commit

Permalink
[FEATURE] 3D Honeycomb - switch direction at smallest bridge point, r…
Browse files Browse the repository at this point in the history
…ather than every layer

Code was taken without any changes from SoftFever/OrcaSlicer/pull/4425
Original PrusaSlicer PR: prusa3d/pull/6434
  • Loading branch information
gringer authored and mjonuschat committed Dec 31, 2024
1 parent 6cbbf74 commit 06dfc3b
Showing 1 changed file with 197 additions and 95 deletions.
292 changes: 197 additions & 95 deletions src/libslic3r/Fill/Fill3DHoneycomb.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,11 @@

namespace Slic3r {

// sign function
template <typename T> int sgn(T val) {
return (T(0) < val) - (val < T(0));
}

/*
Creates a contiguous sequence of points at a specified height that make
up a horizontal slice of the edges of a space filling truncated
Expand All @@ -30,48 +35,98 @@ and Y axes.
Credits: David Eccles (gringer).
*/

// triangular wave function
// this has period (gridSize * 2), and amplitude (gridSize / 2),
// with triWave(pos = 0) = 0
static coordf_t triWave(coordf_t pos, coordf_t gridSize)
{
float t = (pos / (gridSize * 2.)) + 0.25; // convert relative to grid size
t = t - (int)t; // extract fractional part
return((1. - abs(t * 8. - 4.)) * (gridSize / 4.) + (gridSize / 4.));
}

// truncated octagonal waveform, with period and offset
// as per the triangular wave function. The Z position adjusts
// the maximum offset [between -(gridSize / 4) and (gridSize / 4)], with a
// period of (gridSize * 2) and troctWave(Zpos = 0) = 0
static coordf_t troctWave(coordf_t pos, coordf_t gridSize, coordf_t Zpos)
{
coordf_t Zcycle = triWave(Zpos, gridSize);
coordf_t perpOffset = Zcycle / 2;
coordf_t y = triWave(pos, gridSize);
return((abs(y) > abs(perpOffset)) ?
(sgn(y) * perpOffset) :
(y * sgn(perpOffset)));
}

// Identify the important points of curve change within a truncated
// octahedron wave (as waveform fraction t):
// 1. Start of wave (always 0.0)
// 2. Transition to upper "horizontal" part
// 3. Transition from upper "horizontal" part
// 4. Transition to lower "horizontal" part
// 5. Transition from lower "horizontal" part
/* o---o
* / \
* o/ \
* \ /
* \ /
* o---o
*/
static std::vector<coordf_t> getCriticalPoints(coordf_t Zpos, coordf_t gridSize)
{
std::vector<coordf_t> res = {0.};
coordf_t perpOffset = abs(triWave(Zpos, gridSize) / 2.);

coordf_t normalisedOffset = perpOffset / gridSize;
// // for debugging: just generate evenly-distributed points
// for(coordf_t i = 0; i < 2; i += 0.05){
// res.push_back(gridSize * i);
// }
// note: 0 == straight line
if(normalisedOffset > 0){
res.push_back(gridSize * (0. + normalisedOffset));
res.push_back(gridSize * (1. - normalisedOffset));
res.push_back(gridSize * (1. + normalisedOffset));
res.push_back(gridSize * (2. - normalisedOffset));
}
return(res);
}

// Generate an array of points that are in the same direction as the
// basic printing line (i.e. Y points for columns, X points for rows)
// Note: a negative offset only causes a change in the perpendicular
// direction
static std::vector<coordf_t> colinearPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
static std::vector<coordf_t> colinearPoints(const coordf_t Zpos, coordf_t gridSize, std::vector<coordf_t> critPoints,
const size_t baseLocation, size_t gridLength)
{
const coordf_t offset2 = std::abs(offset / coordf_t(2.));
std::vector<coordf_t> points;
points.push_back(baseLocation - offset2);
for (size_t i = 0; i < gridLength; ++i) {
points.push_back(baseLocation + i + offset2);
points.push_back(baseLocation + i + 1 - offset2);
std::vector<coordf_t> points;
points.push_back(baseLocation);
for (coordf_t cLoc = baseLocation; cLoc < gridLength; cLoc+= (gridSize*2)) {
for(size_t pi = 0; pi < critPoints.size(); pi++){
points.push_back(baseLocation + cLoc + critPoints[pi]);
}
points.push_back(baseLocation + gridLength + offset2);
return points;
}
points.push_back(gridLength);
return points;
}

// Generate an array of points for the dimension that is perpendicular to
// the basic printing line (i.e. X points for columns, Y points for rows)
static std::vector<coordf_t> perpendPoints(const coordf_t offset, const size_t baseLocation, size_t gridLength)
{
coordf_t offset2 = offset / coordf_t(2.);
coord_t side = 2 * (baseLocation & 1) - 1;
std::vector<coordf_t> points;
points.push_back(baseLocation - offset2 * side);
for (size_t i = 0; i < gridLength; ++i) {
side = 2*((i+baseLocation) & 1) - 1;
points.push_back(baseLocation + offset2 * side);
points.push_back(baseLocation + offset2 * side);
}
points.push_back(baseLocation - offset2 * side);
return points;
}

// Trims an array of points to specified rectangular limits. Point
// components that are outside these limits are set to the limits.
static inline void trim(Pointfs &pts, coordf_t minX, coordf_t minY, coordf_t maxX, coordf_t maxY)
static std::vector<coordf_t> perpendPoints(const coordf_t Zpos, coordf_t gridSize, std::vector<coordf_t> critPoints,
size_t baseLocation, size_t gridLength,
size_t offsetBase, coordf_t perpDir)
{
for (Vec2d &pt : pts) {
pt.x() = std::clamp(pt.x(), minX, maxX);
pt.y() = std::clamp(pt.y(), minY, maxY);
std::vector<coordf_t> points;
points.push_back(offsetBase);
for (coordf_t cLoc = baseLocation; cLoc < gridLength; cLoc+= gridSize*2) {
for(size_t pi = 0; pi < critPoints.size(); pi++){
coordf_t offset = troctWave(critPoints[pi], gridSize, Zpos);
points.push_back(offsetBase + (offset * perpDir));
}
}
points.push_back(offsetBase);
return points;
}

static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coordf_t> &y)
Expand All @@ -85,68 +140,67 @@ static inline Pointfs zip(const std::vector<coordf_t> &x, const std::vector<coor
}

// Generate a set of curves (array of array of 2d points) that describe a
// horizontal slice of a truncated regular octahedron with edge length 1.
// curveType specifies which lines to print, 1 for vertical lines
// (columns), 2 for horizontal lines (rows), and 3 for both.
static std::vector<Pointfs> makeNormalisedGrid(coordf_t z, size_t gridWidth, size_t gridHeight, size_t curveType)
// horizontal slice of a truncated regular octahedron.
static std::vector<Pointfs> makeActualGrid(coordf_t Zpos, coordf_t gridSize, size_t boundsX, size_t boundsY)
{
// offset required to create a regular octagram
coordf_t octagramGap = coordf_t(0.5);

// sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
coordf_t a = std::sqrt(coordf_t(2.)); // period
coordf_t wave = fabs(fmod(z, a) - a/2.)/a*4. - 1.;
coordf_t offset = wave * octagramGap;

std::vector<Pointfs> points;
if ((curveType & 1) != 0) {
for (size_t x = 0; x <= gridWidth; ++x) {
points.push_back(Pointfs());
Pointfs &newPoints = points.back();
newPoints = zip(
perpendPoints(offset, x, gridHeight),
colinearPoints(offset, 0, gridHeight));
// trim points to grid edges
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
if (x & 1)
std::reverse(newPoints.begin(), newPoints.end());
}
std::vector<Pointfs> points;
std::vector<coordf_t> critPoints = getCriticalPoints(Zpos, gridSize);
coordf_t zCycle = fmod(Zpos + gridSize/2, gridSize * 2.) / (gridSize * 2.);
bool printVert = zCycle < 0.5;
if (printVert) {
int perpDir = -1;
for (coordf_t x = 0; x <= (boundsX); x+= gridSize, perpDir *= -1) {
points.push_back(Pointfs());
Pointfs &newPoints = points.back();
newPoints = zip(
perpendPoints(Zpos, gridSize, critPoints, 0, boundsY, x, perpDir),
colinearPoints(Zpos, gridSize, critPoints, 0, boundsY));
if (perpDir == 1)
std::reverse(newPoints.begin(), newPoints.end());
}
if ((curveType & 2) != 0) {
for (size_t y = 0; y <= gridHeight; ++y) {
points.push_back(Pointfs());
Pointfs &newPoints = points.back();
newPoints = zip(
colinearPoints(offset, 0, gridWidth),
perpendPoints(offset, y, gridWidth));
// trim points to grid edges
trim(newPoints, coordf_t(0.), coordf_t(0.), coordf_t(gridWidth), coordf_t(gridHeight));
if (y & 1)
std::reverse(newPoints.begin(), newPoints.end());
}
} else {
int perpDir = 1;
for (coordf_t y = gridSize; y <= (boundsY); y+= gridSize, perpDir *= -1) {
points.push_back(Pointfs());
Pointfs &newPoints = points.back();
newPoints = zip(
colinearPoints(Zpos, gridSize, critPoints, 0, boundsX),
perpendPoints(Zpos, gridSize, critPoints, 0, boundsX, y, perpDir));
if (perpDir == -1)
std::reverse(newPoints.begin(), newPoints.end());
}
return points;
}
return points;
}

// Generate a set of curves (array of array of 2d points) that describe a
// horizontal slice of a truncated regular octahedron with a specified
// grid square size.
static Polylines makeGrid(coord_t z, coord_t gridSize, size_t gridWidth, size_t gridHeight, size_t curveType)
// gridWidth and gridHeight define the width and height of the bounding box respectively
static Polylines makeGrid(coordf_t z, coordf_t gridSize, coordf_t boundWidth, coordf_t boundHeight, bool fillEvenly)
{
coord_t scaleFactor = gridSize;
coordf_t normalisedZ = coordf_t(z) / coordf_t(scaleFactor);
std::vector<Pointfs> polylines = makeNormalisedGrid(normalisedZ, gridWidth, gridHeight, curveType);
Polylines result;
result.reserve(polylines.size());
for (std::vector<Pointfs>::const_iterator it_polylines = polylines.begin(); it_polylines != polylines.end(); ++ it_polylines) {
result.push_back(Polyline());
Polyline &polyline = result.back();
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
polyline.points.push_back(Point(coord_t((*it)(0) * scaleFactor), coord_t((*it)(1) * scaleFactor)));
}
return result;
std::vector<Pointfs> polylines = makeActualGrid(z, gridSize, boundWidth, boundHeight);
Polylines result;
result.reserve(polylines.size());
for (std::vector<Pointfs>::const_iterator it_polylines = polylines.begin();
it_polylines != polylines.end(); ++ it_polylines) {
result.push_back(Polyline());
Polyline &polyline = result.back();
for (Pointfs::const_iterator it = it_polylines->begin(); it != it_polylines->end(); ++ it)
polyline.points.push_back(Point(coord_t((*it)(0)), coord_t((*it)(1))));
}
return result;
}

// FillParams has the following useful information:
// density <0 .. 1> [proportion of space to fill]
// anchor_length [???]
// anchor_length_max [???]
// dont_connect() [avoid connect lines]
// dont_adjust [avoid filling space evenly]
// monotonic [fill strictly left to right]
// complete [complete each loop]

void Fill3DHoneycomb::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
Expand All @@ -156,27 +210,75 @@ void Fill3DHoneycomb::_fill_surface_single(
{
// no rotation is supported for this infill pattern
BoundingBox bb = expolygon.contour.bounding_box();
coord_t distance = coord_t(scale_(this->spacing) / params.density);

// Note: with equally-scaled X/Y/Z, the pattern will create a vertically-stretched
// truncated octahedron; so Z is pre-adjusted first by scaling by sqrt(2)
coordf_t zScale = sqrt(2);

// adjustment to account for the additional distance of octagram curves
// note: this only strictly applies for a rectangular area where the total
// Z travel distance is a multiple of the spacing... but it should
// be at least better than the prevous estimate which assumed straight
// lines
// = 4 * integrate(func=4*x(sqrt(2) - 1) + 1, from=0, to=0.25)
// = (sqrt(2) + 1) / 2 [... I think]
// make a first guess at the preferred grid Size
coordf_t gridSize = (scale_(this->spacing) * ((zScale + 1.) / 2.) / params.density);

// This density calculation is incorrect for many values > 25%, possibly
// due to quantisation error, so this value is used as a first guess, then the
// Z scale is adjusted to make the layer patterns consistent / symmetric
// This means that the resultant infill won't be an ideal truncated octahedron,
// but it should look better than the equivalent quantised version

coordf_t layerHeight = scale_(thickness_layers);
// ceiling to an integer value of layers per Z
// (with a little nudge in case it's close to perfect)
coordf_t layersPerModule = floor((gridSize * 2) / (zScale * layerHeight) + 0.05);
if(params.density > 0.42){ // exact layer pattern for >42% density
layersPerModule = 2;
// re-adjust the grid size for a partial octahedral path
// (scale of 1.1 guessed based on modeling)
gridSize = (scale_(this->spacing) * 1.1 / params.density);
// re-adjust zScale to make layering consistent
zScale = (gridSize * 2) / (layersPerModule * layerHeight);
} else {
if(layersPerModule < 2){
layersPerModule = 2;
}
// re-adjust zScale to make layering consistent
zScale = (gridSize * 2) / (layersPerModule * layerHeight);
// re-adjust the grid size to account for the new zScale
gridSize = (scale_(this->spacing) * ((zScale + 1.) / 2.) / params.density);
// re-calculate layersPerModule and zScale
layersPerModule = floor((gridSize * 2) / (zScale * layerHeight) + 0.05);
if(layersPerModule < 2){
layersPerModule = 2;
}
zScale = (gridSize * 2) / (layersPerModule * layerHeight);
}

// align bounding box to a multiple of our honeycomb grid module
// (a module is 2*$distance since one $distance half-module is
// growing while the other $distance half-module is shrinking)
bb.merge(align_to_grid(bb.min, Point(2*distance, 2*distance)));
// (a module is 2*$gridSize since one $gridSize half-module is
// growing while the other $gridSize half-module is shrinking)
bb.merge(align_to_grid(bb.min, Point(gridSize*4, gridSize*4)));

// generate pattern
Polylines polylines = makeGrid(
scale_(this->z),
distance,
ceil(bb.size()(0) / distance) + 1,
ceil(bb.size()(1) / distance) + 1,
((this->layer_id/thickness_layers) % 2) + 1);
Polylines polylines =
makeGrid(
scale_(this->z) * zScale,
gridSize,
bb.size()(0),
bb.size()(1),
!params.dont_adjust);

// move pattern in place
for (Polyline &pl : polylines)
pl.translate(bb.min);
for (Polyline &pl : polylines){
pl.translate(bb.min);
}

// clip pattern to boundaries, chain the clipped polylines
polylines = intersection_pl(polylines, expolygon);
polylines = intersection_pl(polylines, to_polygons(expolygon));

// connect lines if needed
if (params.dont_connect() || polylines.size() <= 1)
Expand All @@ -185,4 +287,4 @@ void Fill3DHoneycomb::_fill_surface_single(
this->connect_infill(std::move(polylines), expolygon, polylines_out, this->spacing, params);
}

} // namespace Slic3r
} // namespace Slic3r

0 comments on commit 06dfc3b

Please sign in to comment.