Skip to content

Commit

Permalink
Update MODEL_ZOO.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Fang-Haoshu authored Nov 8, 2022
1 parent ec6e12d commit 555071e
Showing 1 changed file with 21 additions and 15 deletions.
36 changes: 21 additions & 15 deletions docs/MODEL_ZOO.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,27 @@ python scripts/demo_inference.py --cfg configs/halpe_26/resnet/256x192_res50_lr1
- This model is trained based on the first 26 keypoints of Halpe Full-body datatset (without face and hand keypoints).
- The speed is tested on COCO val2017 on a single NVIDIA GeForce RTX 3090 gpu, with `batch_size=64` in each iteration and offline yolov3 human detection results.


## Multi Domain Models **(Strongly Recommended)**
| Model | Backbone | Detector | Input Size | Loss Type | AP | Speed | Download | Config | #keypoints |
|--------------------------|----------|----------|------------|------------|------------|-------|-----------|--------|--------------|
|[Fast Pose](../configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml) | ResNet50 | YOLOv3 | 256x192 | Symmetric Integral | 50.1 | 16.28 iter/s | [Google](https://drive.google.com/file/d/1Bb3kPoFFt-M0Y3ceqNO8DTXi1iNDd4gI/view?usp=sharing) [Baidu(code: d0wi)](https://pan.baidu.com/s/1GaHzMHTqYze2rVn7u1sjVg) | [cfg](../configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml) | 136 |
|[Fast Pose (DCN)](../configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | ResNet50 - dcn | YOLOv3 | 256x192 | Combined (10 hand weight) | 49.8 | 10.35 iter/s | [Google](https://drive.google.com/file/d/1wX1Z2ZOoysgSNovlgiEtJKpbR8tUBWYR/view?usp=sharing) [Baidu(code: app1)](https://pan.baidu.com/s/1bIro0XfYj0FIVf84QzdDoQ) | [cfg](../configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | 136 |
|[Fast Pose (DCN)](../configs/halpe_68_noface/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | ResNet50 - dcn | YOLOv3 | 256x192 | Combined | - | 13.88 iter/s | [Google](https://drive.google.com/file/d/14Qn9gxm-EVzqFi7v25Y5TqKIvrFLy_BR/view?usp=sharing) [Baidu(code: 6kwr)](https://pan.baidu.com/s/1GLNxN3gfekUVY0HZu41fJQ) | [cfg](../configs/halpe_68_noface/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | 68 (no face) |
|[Fast Pose (DCN)](../configs/single_hand/resnet/256x192_res50_lr1e-3_2x-dcn-regression.yaml) | ResNet50 - dcn | - | 256x192 | Symmetric Integral | - | 30.20 iter/s | [Google](https://drive.google.com/file/d/1MntndimlUP5Hxef1UN9ZDMBVglfA606J/view?usp=sharing) [Baidu(code: nwxx)](https://pan.baidu.com/s/1OR-uH25MFQ7kY8Gt_aJfbw ) | [cfg](../configs/single_hand/resnet/256x192_res50_lr1e-3_2x-dcn-regression.yaml) | 21 (single hand) |

For the most accurate wholebody pose estimation, you can run with:
```
python scripts/demo_inference.py --cfg configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml --checkpoint pretrained_models/multi_domain_fast50_dcn_combined_256x192.pth --indir examples/demo/ --save_img
```
or, you can run with (this version is a little faster and more accurate on body keypoints, but its performance on hand keypoints is worser):
```
python scripts/demo_inference.py --cfg configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml --checkpoint pretrained_models/multi_domain_fast50_regression_256x192.pth --indir examples/demo/ --save_img
```
#### Notes
- Above models are trained on multiple datasets, thus they can perform well for in-the-wild images.
- 'Combined (10 hand weight)' means that we use different loss for hand and body keypoints

## [Halpe dataset](https://github.com/Fang-Haoshu/Halpe-FullBody) (136 keypoints)

| Model | Backbone | Detector | Input Size | Loss Type | AP | Speed | Download | Config |
Expand Down Expand Up @@ -73,22 +94,7 @@ python scripts/demo_inference.py --cfg configs/halpe_136/resnet/256x192_res50_lr
- The APs are tested under COCO WholeBody's criterion, with flip test on.
- The speed is tested on COCO val2017 on a single NVIDIA GeForce RTX 3090 gpu, with `batch_size=64` in each iteration and offline yolov3 human detection results.

## Multi Domain Models **(Strongly Recommended)**
| Model | Backbone | Detector | Input Size | Loss Type | AP | Speed | Download | Config | #keypoints |
|--------------------------|----------|----------|------------|------------|------------|-------|-----------|--------|--------------|
|[Fast Pose](../configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml) | ResNet50 | YOLOv3 | 256x192 | Symmetric Integral | 50.1 | 16.28 iter/s | [Google](https://drive.google.com/file/d/1Bb3kPoFFt-M0Y3ceqNO8DTXi1iNDd4gI/view?usp=sharing) [Baidu(code: d0wi)](https://pan.baidu.com/s/1GaHzMHTqYze2rVn7u1sjVg) | [cfg](../configs/halpe_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml) | 136 |
|[Fast Pose (DCN)](../configs/halpe_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | ResNet50 - dcn | YOLOv3 | 256x192 | Combined (10 hand weight) | 49.8 | 10.35 iter/s | [Google](https://drive.google.com/file/d/1wX1Z2ZOoysgSNovlgiEtJKpbR8tUBWYR/view?usp=sharing) [Baidu(code: app1)](https://pan.baidu.com/s/1bIro0XfYj0FIVf84QzdDoQ) | [cfg](../configs/halpe_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | 136 |
|[Fast Pose (DCN)](../configs/halpe_68_noface/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | ResNet50 - dcn | YOLOv3 | 256x192 | Combined | - | 13.88 iter/s | [Google](https://drive.google.com/file/d/14Qn9gxm-EVzqFi7v25Y5TqKIvrFLy_BR/view?usp=sharing) [Baidu(code: 6kwr)](https://pan.baidu.com/s/1GLNxN3gfekUVY0HZu41fJQ) | [cfg](../configs/halpe_68_noface/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml) | 68 (no face) |
|[Fast Pose (DCN)](../configs/single_hand/resnet/256x192_res50_lr1e-3_2x-dcn-regression.yaml) | ResNet50 - dcn | - | 256x192 | Symmetric Integral | - | 30.20 iter/s | [Google](https://drive.google.com/file/d/1MntndimlUP5Hxef1UN9ZDMBVglfA606J/view?usp=sharing) [Baidu(code: nwxx)](https://pan.baidu.com/s/1OR-uH25MFQ7kY8Gt_aJfbw ) | [cfg](../configs/single_hand/resnet/256x192_res50_lr1e-3_2x-dcn-regression.yaml) | 21 (single hand) |

For the most accurate wholebody pose estimation, you can run with:
```
python scripts/demo_inference.py --cfg configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-dcn-combined.yaml --checkpoint pretrained_models/multi_domain_fast50_dcn_combined_256x192.pth --indir examples/demo/ --save_img
```
or, you can run with (this version is a little faster and more accurate on body keypoints, but its performance on hand keypoints is worser):
```
python scripts/demo_inference.py --cfg configs/halpe_coco_wholebody_136/resnet/256x192_res50_lr1e-3_2x-regression.yaml --checkpoint pretrained_models/multi_domain_fast50_regression_256x192.pth --indir examples/demo/ --save_img
```

#### Notes
- These models are strongly recommended because they are more accurate and flexible.
Expand Down

0 comments on commit 555071e

Please sign in to comment.