The missing link between your GPU and Python AI libraries
"Why does my PyTorch crash with CUDA errors when I just installed it?"
Because your driver supports CUDA 11.8, but
pip install torchgave you CUDA 12.4 wheels.
Env-Doctor diagnoses and fixes the #1 frustration in GPU computing: mismatched CUDA versions between your NVIDIA driver, system toolkit, cuDNN, and Python libraries.
It takes 5 seconds to find out if your environment is broken - and exactly how to fix it.
| Feature | What It Does |
|---|---|
| One-Command Diagnosis | Check compatibility: GPU Driver โ CUDA Toolkit โ cuDNN โ PyTorch/TensorFlow/JAX |
| Safe Install Commands | Get the exact pip install command that works with YOUR driver |
| Extension Library Support | Install compilation packages (flash-attn, SageAttention, auto-gptq, apex, xformers) with CUDA version matching |
| AI Model Compatibility | Check if LLMs, Diffusion, or Audio models fit on your GPU before downloading |
| WSL2 GPU Support | Validate GPU forwarding, detect driver conflicts within WSL2 env for Windows users |
| Deep CUDA Analysis | Find multiple installations, PATH issues, environment misconfigurations |
| Container Validation | Catch GPU config errors in Dockerfiles before you build |
| MCP Server | Expose diagnostics to AI assistants (Claude Desktop, Zed) via Model Context Protocol |
| CI/CD Ready | JSON output and proper exit codes for automation |
pip install env-doctorOr from source:
git clone https://github.com/mitulgarg/env-doctor.git
cd env-doctor
pip install -e .env-doctor checkExample output:
๐ฉบ ENV-DOCTOR DIAGNOSIS
============================================================
๐ฅ๏ธ Environment: Native Linux
๐ฎ GPU Driver
โ
NVIDIA Driver: 535.146.02
โโ Max CUDA: 12.2
๐ง CUDA Toolkit
โ
System CUDA: 12.1.1
๐ฆ Python Libraries
โ
torch 2.1.0+cu121
โ
All checks passed!
env-doctor install torchโฌ๏ธ Run this command to install the SAFE version:
---------------------------------------------------
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
---------------------------------------------------
For extension libraries like flash-attn, SageAttention, auto-gptq, apex, and xformers that require compilation from source, env-doctor provides special guidance to handle CUDA version mismatches:
env-doctor install flash-attnExample output (with CUDA mismatch):
๐ฉบ PRESCRIPTION FOR: flash-attn
โ ๏ธ CUDA VERSION MISMATCH DETECTED
System nvcc: 12.1.1
PyTorch CUDA: 12.4.1
๐ง flash-attn requires EXACT CUDA version match for compilation.
You have TWO options to fix this:
============================================================
๐ฆ OPTION 1: Install PyTorch matching your nvcc (12.1)
============================================================
Trade-offs:
โ
No system changes needed
โ
Faster to implement
โ Older PyTorch version (may lack new features)
Commands:
# Uninstall current PyTorch
pip uninstall torch torchvision torchaudio -y
# Install PyTorch for CUDA 12.1
pip install torch --index-url https://download.pytorch.org/whl/cu121
# Install flash-attn
pip install flash-attn --no-build-isolation
============================================================
โ๏ธ OPTION 2: Upgrade nvcc to match PyTorch (12.4)
============================================================
Trade-offs:
โ
Keep latest PyTorch
โ
Better long-term solution
โ Requires system-level changes
โ Verify driver supports CUDA 12.4
Steps:
1. Check driver compatibility:
env-doctor check
2. Download CUDA Toolkit 12.4:
https://developer.nvidia.com/cuda-12-4-0-download-archive
3. Install CUDA Toolkit (follow NVIDIA's platform-specific guide)
4. Verify installation:
nvcc --version
5. Install flash-attn:
pip install flash-attn --no-build-isolation
============================================================
env-doctor model llama-3-8b๐ค Checking: LLAMA-3-8B (8.0B params)
๐ฅ๏ธ Your Hardware: RTX 3090 (24GB)
๐พ VRAM Requirements:
โ
FP16: 19.2GB - fits with 4.8GB free
โ
INT4: 4.8GB - fits with 19.2GB free
โ
This model WILL FIT on your GPU!
List all models: env-doctor model --list
Automatic HuggingFace Support (New โจ) If a model isn't found locally, env-doctor automatically checks the HuggingFace Hub, fetches its parameter metadata, and caches it locally for future runs โ no manual setup required.
# Fetches from HuggingFace on first run, cached afterward
env-doctor model bert-base-uncased
env-doctor model sentence-transformers/all-MiniLM-L6-v2Output:
๐ค Checking: BERT-BASE-UNCASED
(Fetched from HuggingFace API - cached for future use)
Parameters: 0.11B
HuggingFace: bert-base-uncased
๐ฅ๏ธ Your Hardware:
RTX 3090 (24GB VRAM)
๐พ VRAM Requirements & Compatibility
โ
FP16: 264 MB - Fits easily!
๐ก Recommendations:
1. Use fp16 for best quality on your GPU
env-doctor dockerfile๐ณ DOCKERFILE VALIDATION
โ Line 1: CPU-only base image: python:3.10
Fix: FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04
โ Line 8: PyTorch missing --index-url
Fix: pip install torch --index-url https://download.pytorch.org/whl/cu121
| Command | Purpose |
|---|---|
env-doctor check |
Full environment diagnosis |
env-doctor install <lib> |
Safe install command for PyTorch/TensorFlow/JAX, extension libraries (flash-attn, auto-gptq, apex, xformers, SageAttention, etc.) |
env-doctor model <name> |
Check model VRAM requirements |
env-doctor cuda-info |
Detailed CUDA toolkit analysis |
env-doctor cudnn-info |
cuDNN library analysis |
env-doctor dockerfile |
Validate Dockerfile |
env-doctor docker-compose |
Validate docker-compose.yml |
env-doctor scan |
Scan for deprecated imports |
env-doctor debug |
Verbose detector output |
# JSON output for scripting
env-doctor check --json
# CI mode with exit codes (0=pass, 1=warn, 2=error)
env-doctor check --ciGitHub Actions example:
- run: pip install env-doctor
- run: env-doctor check --ciEnv-Doctor includes a built-in Model Context Protocol (MCP) server that exposes diagnostic tools to AI assistants like Claude Desktop.
-
Install env-doctor:
pip install env-doctor
-
Add to Claude Desktop config (
~/Library/Application Support/Claude/claude_desktop_config.json):{ "mcpServers": { "env-doctor": { "command": "env-doctor-mcp" } } } -
Restart Claude Desktop - the tools will be available automatically.
env_check- Full GPU/CUDA environment diagnosticsenv_check_component- Check specific component (driver, CUDA, cuDNN, etc.)model_check- Analyze if AI models fit on your GPUmodel_list- List all available models in databasedockerfile_validate- Validate Dockerfiles for GPU issues
Ask Claude Desktop:
- "Check my GPU environment"
- "Can I run Llama 3 70B on my GPU?"
- "Validate this Dockerfile for GPU issues"
- "What CUDA version does my PyTorch require?"
Learn more: MCP Integration Guide
Full documentation: https://mitulgarg.github.io/env-doctor/
- Getting Started
- Command Reference
- MCP Integration Guide
- WSL2 GPU Guide
- CI/CD Integration
- Architecture
Contributions welcome! See CONTRIBUTING.md for details.
MIT License - see LICENSE
