-
Notifications
You must be signed in to change notification settings - Fork 21
Quick start guide
Mirza Krak edited this page Mar 9, 2023
·
11 revisions
As this layer depends on the Freescale/NXP BSP we can utilize the base setup from there.
Create directory for repo
mkdir ${HOME}/bin
Fetch the repo script
curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ${HOME}/bin/repo
Set the executable bit
chmod a+x ${HOME}/bin/repo
You should also add the following to your .bashrc or equivalent, for convenience.
PATH=${PATH}:~/bin
Create directory where you want to store the environment and change the shell to that location:
mkdir coral && cd coral
Initialize repo manifest:
repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b master
Fetch layers in manifest:
repo sync
Clone meta-clang
:
git clone https://github.com/kraj/meta-clang.git sources/meta-clang -b master
Clone meta-coral
:
git clone https://github.com/mirzak/meta-coral.git sources/meta-coral -b master
Setup the environment:
MACHINE=coral-dev DISTRO=fslc-xwayland source ./setup-environment build
Add the meta-clang
layer to bblayers.conf:
echo 'BBLAYERS += "${BSPDIR}/sources/meta-clang"' >> conf/bblayers.conf
Add the meta-coral-bsp
layer to bblayers.conf:
echo 'BBLAYERS += "${BSPDIR}/sources/meta-coral"' >> conf/bblayers.conf
Add python3-edgetpu-examples
to your build:
echo 'IMAGE_INSTALL:append = "python3-edgetpu-examples"' >> conf/local.conf
Start the build:
bitbake core-image-base
On the device now you can run the following.
Go to the examples directory:
cd /usr/share/edgetpu/examples
Run the classify_image.py
examples:
python3 classify_image.py \
--model models/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite \
--label models/inat_bird_labels.txt \
--image images/parrot.jpg
python3 classify_image.py \
--model models/mobilenet_v2_1.0_224_inat_bird_quant_edgetpu.tflite \
--label models/inat_bird_labels.txt \
--image images/owl.jpg
python3 classify_image.py \
--model models/mobilenet_v1_1.0_224_quant.tflite \
--label models/imagenet_labels.txt \
--image images/hot_dog.jpg