forked from dendisuhubdy/libtorch_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b918379
commit 269c433
Showing
6 changed files
with
314 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
--- | ||
AccessModifierOffset: -1 | ||
AlignAfterOpenBracket: AlwaysBreak | ||
AlignConsecutiveAssignments: false | ||
AlignConsecutiveDeclarations: false | ||
AlignEscapedNewlinesLeft: true | ||
AlignOperands: false | ||
AlignTrailingComments: false | ||
AllowAllParametersOfDeclarationOnNextLine: false | ||
AllowShortBlocksOnASingleLine: false | ||
AllowShortCaseLabelsOnASingleLine: false | ||
AllowShortFunctionsOnASingleLine: Empty | ||
AllowShortIfStatementsOnASingleLine: false | ||
AllowShortLoopsOnASingleLine: false | ||
AlwaysBreakAfterReturnType: None | ||
AlwaysBreakBeforeMultilineStrings: true | ||
AlwaysBreakTemplateDeclarations: true | ||
BinPackArguments: false | ||
BinPackParameters: false | ||
BraceWrapping: | ||
AfterClass: false | ||
AfterControlStatement: false | ||
AfterEnum: false | ||
AfterFunction: false | ||
AfterNamespace: false | ||
AfterObjCDeclaration: false | ||
AfterStruct: false | ||
AfterUnion: false | ||
BeforeCatch: false | ||
BeforeElse: false | ||
IndentBraces: false | ||
BreakBeforeBinaryOperators: None | ||
BreakBeforeBraces: Attach | ||
BreakBeforeTernaryOperators: true | ||
BreakConstructorInitializersBeforeComma: false | ||
BreakAfterJavaFieldAnnotations: false | ||
BreakStringLiterals: false | ||
ColumnLimit: 80 | ||
CommentPragmas: '^ IWYU pragma:' | ||
CompactNamespaces: false | ||
ConstructorInitializerAllOnOneLineOrOnePerLine: true | ||
ConstructorInitializerIndentWidth: 4 | ||
ContinuationIndentWidth: 4 | ||
Cpp11BracedListStyle: true | ||
DerivePointerAlignment: false | ||
DisableFormat: false | ||
ForEachMacros: [ FOR_EACH_RANGE, FOR_EACH, ] | ||
IncludeCategories: | ||
- Regex: '^<.*\.h(pp)?>' | ||
Priority: 1 | ||
- Regex: '^<.*' | ||
Priority: 2 | ||
- Regex: '.*' | ||
Priority: 3 | ||
IndentCaseLabels: true | ||
IndentWidth: 2 | ||
IndentWrappedFunctionNames: false | ||
KeepEmptyLinesAtTheStartOfBlocks: false | ||
MacroBlockBegin: '' | ||
MacroBlockEnd: '' | ||
MaxEmptyLinesToKeep: 1 | ||
NamespaceIndentation: None | ||
ObjCBlockIndentWidth: 2 | ||
ObjCSpaceAfterProperty: false | ||
ObjCSpaceBeforeProtocolList: false | ||
PenaltyBreakBeforeFirstCallParameter: 1 | ||
PenaltyBreakComment: 300 | ||
PenaltyBreakFirstLessLess: 120 | ||
PenaltyBreakString: 1000 | ||
PenaltyExcessCharacter: 1000000 | ||
PenaltyReturnTypeOnItsOwnLine: 2000000 | ||
PointerAlignment: Left | ||
ReflowComments: true | ||
SortIncludes: true | ||
SpaceAfterCStyleCast: false | ||
SpaceBeforeAssignmentOperators: true | ||
SpaceBeforeParens: ControlStatements | ||
SpaceInEmptyParentheses: false | ||
SpacesBeforeTrailingComments: 1 | ||
SpacesInAngles: false | ||
SpacesInContainerLiterals: true | ||
SpacesInCStyleCastParentheses: false | ||
SpacesInParentheses: false | ||
SpacesInSquareBrackets: false | ||
Standard: Cpp11 | ||
TabWidth: 8 | ||
UseTab: Never | ||
... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
import argparse | ||
|
||
import matplotlib.pyplot as plt | ||
import torch | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-i", "--sample-file", required=True) | ||
parser.add_argument("-o", "--out-file", default="out.png") | ||
parser.add_argument("-d", "--dimension", type=int, default=3) | ||
options = parser.parse_args() | ||
|
||
module = torch.jit.load(options.sample_file) | ||
images = list(module.parameters())[0] | ||
|
||
for index in range(options.dimension * options.dimension): | ||
image = images[index].detach().cpu().reshape(28, 28).mul(255).to(torch.uint8) | ||
array = image.numpy() | ||
axis = plt.subplot(options.dimension, options.dimension, 1 + index) | ||
plt.imshow(array, cmap="gray") | ||
axis.get_xaxis().set_visible(False) | ||
axis.get_yaxis().set_visible(False) | ||
|
||
plt.savefig(options.out_file) | ||
print("Saved ", options.out_file) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
#include <torch/torch.h> | ||
|
||
#include <cmath> | ||
#include <cstdio> | ||
#include <iostream> | ||
|
||
// The size of the noise vector fed to the generator. | ||
const int64_t kNoiseSize = 100; | ||
|
||
// The batch size for training. | ||
const int64_t kBatchSize = 64; | ||
|
||
// The number of epochs to train. | ||
const int64_t kNumberOfEpochs = 30; | ||
|
||
// Where to find the MNIST dataset. | ||
const char* kDataFolder = "./data/mnist"; | ||
|
||
// After how many batches to create a new checkpoint periodically. | ||
const int64_t kCheckpointEvery = 200; | ||
|
||
// How many images to sample at every checkpoint. | ||
const int64_t kNumberOfSamplesPerCheckpoint = 10; | ||
|
||
// Set to `true` to restore models and optimizers from previously saved | ||
// checkpoints. | ||
const bool kRestoreFromCheckpoint = false; | ||
|
||
// After how many batches to log a new update with the loss value. | ||
const int64_t kLogInterval = 10; | ||
|
||
using namespace torch; | ||
|
||
int main(int argc, const char* argv[]) { | ||
torch::manual_seed(1); | ||
|
||
// Create the device we pass around based on whether CUDA is available. | ||
torch::Device device(torch::kCPU); | ||
if (torch::cuda::is_available()) { | ||
std::cout << "CUDA is available! Training on GPU." << std::endl; | ||
device = torch::Device(torch::kCUDA); | ||
} | ||
|
||
nn::Sequential generator( | ||
// Layer 1 | ||
nn::Conv2d(nn::Conv2dOptions(kNoiseSize, 256, 4) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::BatchNorm(256), | ||
nn::Functional(torch::relu), | ||
// Layer 2 | ||
nn::Conv2d(nn::Conv2dOptions(256, 128, 3) | ||
.stride(2) | ||
.padding(1) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::BatchNorm(128), | ||
nn::Functional(torch::relu), | ||
// Layer 3 | ||
nn::Conv2d(nn::Conv2dOptions(128, 64, 4) | ||
.stride(2) | ||
.padding(1) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::BatchNorm(64), | ||
nn::Functional(torch::relu), | ||
// Layer 4 | ||
nn::Conv2d(nn::Conv2dOptions(64, 1, 4) | ||
.stride(2) | ||
.padding(1) | ||
.with_bias(false) | ||
.transposed(true)), | ||
nn::Functional(torch::tanh)); | ||
generator->to(device); | ||
|
||
nn::Sequential discriminator( | ||
// Layer 1 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(1, 64, 4).stride(2).padding(1).with_bias(false)), | ||
nn::Functional(torch::leaky_relu, 0.2), | ||
// Layer 2 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(64, 128, 4).stride(2).padding(1).with_bias(false)), | ||
nn::BatchNorm(128), | ||
nn::Functional(torch::leaky_relu, 0.2), | ||
// Layer 3 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(128, 256, 4).stride(2).padding(1).with_bias(false)), | ||
nn::BatchNorm(256), | ||
nn::Functional(torch::leaky_relu, 0.2), | ||
// Layer 4 | ||
nn::Conv2d( | ||
nn::Conv2dOptions(256, 1, 3).stride(1).padding(0).with_bias(false)), | ||
nn::Functional(torch::sigmoid)); | ||
discriminator->to(device); | ||
|
||
// Assume the MNIST dataset is available under `kDataFolder`; | ||
auto dataset = torch::data::datasets::MNIST(kDataFolder) | ||
.map(torch::data::transforms::Normalize<>(0.5, 0.5)) | ||
.map(torch::data::transforms::Stack<>()); | ||
const int64_t batches_per_epoch = | ||
std::ceil(dataset.size().value() / static_cast<double>(kBatchSize)); | ||
|
||
auto data_loader = torch::data::make_data_loader( | ||
std::move(dataset), | ||
torch::data::DataLoaderOptions().batch_size(kBatchSize).workers(2)); | ||
|
||
torch::optim::Adam generator_optimizer( | ||
generator->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5)); | ||
torch::optim::Adam discriminator_optimizer( | ||
discriminator->parameters(), torch::optim::AdamOptions(2e-4).beta1(0.5)); | ||
|
||
if (kRestoreFromCheckpoint) { | ||
torch::load(generator, "generator-checkpoint.pt"); | ||
torch::load(generator_optimizer, "generator-optimizer-checkpoint.pt"); | ||
torch::load(discriminator, "discriminator-checkpoint.pt"); | ||
torch::load( | ||
discriminator_optimizer, "discriminator-optimizer-checkpoint.pt"); | ||
} | ||
|
||
int64_t checkpoint_counter = 1; | ||
for (int64_t epoch = 1; epoch <= kNumberOfEpochs; ++epoch) { | ||
int64_t batch_index = 0; | ||
for (torch::data::Example<>& batch : *data_loader) { | ||
// Train discriminator with real images. | ||
discriminator->zero_grad(); | ||
torch::Tensor real_images = batch.data.to(device); | ||
torch::Tensor real_labels = | ||
torch::empty(batch.data.size(0), device).uniform_(0.8, 1.0); | ||
torch::Tensor real_output = discriminator->forward(real_images); | ||
torch::Tensor d_loss_real = | ||
torch::binary_cross_entropy(real_output, real_labels); | ||
d_loss_real.backward(); | ||
|
||
// Train discriminator with fake images. | ||
torch::Tensor noise = | ||
torch::randn({batch.data.size(0), kNoiseSize, 1, 1}, device); | ||
torch::Tensor fake_images = generator->forward(noise); | ||
torch::Tensor fake_labels = torch::zeros(batch.data.size(0), device); | ||
torch::Tensor fake_output = discriminator->forward(fake_images.detach()); | ||
torch::Tensor d_loss_fake = | ||
torch::binary_cross_entropy(fake_output, fake_labels); | ||
d_loss_fake.backward(); | ||
|
||
torch::Tensor d_loss = d_loss_real + d_loss_fake; | ||
discriminator_optimizer.step(); | ||
|
||
// Train generator. | ||
generator->zero_grad(); | ||
fake_labels.fill_(1); | ||
fake_output = discriminator->forward(fake_images); | ||
torch::Tensor g_loss = | ||
torch::binary_cross_entropy(fake_output, fake_labels); | ||
g_loss.backward(); | ||
generator_optimizer.step(); | ||
|
||
if (batch_index % kLogInterval == 0) { | ||
std::printf( | ||
"\r[%2ld/%2ld][%3ld/%3ld] D_loss: %.4f | G_loss: %.4f", | ||
epoch, | ||
kNumberOfEpochs, | ||
++batch_index, | ||
batches_per_epoch, | ||
d_loss.item<float>(), | ||
g_loss.item<float>()); | ||
} | ||
|
||
if (batch_index % kCheckpointEvery == 0) { | ||
// Checkpoint the model and optimizer state. | ||
torch::save(generator, "generator-checkpoint.pt"); | ||
torch::save(generator_optimizer, "generator-optimizer-checkpoint.pt"); | ||
torch::save(discriminator, "discriminator-checkpoint.pt"); | ||
torch::save( | ||
discriminator_optimizer, "discriminator-optimizer-checkpoint.pt"); | ||
// Sample the generator and save the images. | ||
torch::Tensor samples = generator->forward(torch::randn( | ||
{kNumberOfSamplesPerCheckpoint, kNoiseSize, 1, 1}, device)); | ||
torch::save( | ||
(samples + 1.0) / 2.0, | ||
torch::str("dcgan-sample-", checkpoint_counter, ".pt")); | ||
std::cout << "\n-> checkpoint " << ++checkpoint_counter << '\n'; | ||
} | ||
} | ||
} | ||
|
||
std::cout << "Training complete!" << std::endl; | ||
} |