Skip to content

update Fcenet readme #475

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Jul 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion configs/det/fcenet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ The FCENet in MindOCR is trained on ICDAR 2015 dataset. The training results are

| **Model** | **Context** | **Backbone** | **Pretrained** | **Recall** | **Precision** | **F-score** | **Train T.** | **Throughput** | **Recipe** | **Download** |
|---------------------|----------------|---------------|------------|------------|---------------|-------------|--------------|-----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-5e765611.mindir) |
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |

</div>

Expand Down
4 changes: 2 additions & 2 deletions configs/det/fcenet/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ MindOCR中的FCENet网络在ICDAR 2015数据集上训练。训练结果如下:

| **模型** | **环境配置** | **骨干网络** | **预训练数据集** | **Recall** | **Precision** | **F-score** | **训练时间** | **吞吐量** | **配置文件** | **模型权重下载** |
|---------------------|----------------|---------------|------------|------------|---------------|-------------|--------------|-----------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-5e765611.mindir) |
| FCENet | D910x4-MS2.0-F | ResNet50 | ImageNet | 81.51% | 86.90% | 84.12% | 33 s/epoch | 7 img/s | [yaml](fce_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/fcenet/fcenet_resnet50-43857f7f-dad7dfcc.mindir) |

</div>

Expand Down Expand Up @@ -190,7 +190,7 @@ python tools/eval.py --config configs/det/fcenet/fce_icdar15.yaml
```shell
python tools/export.py --model_name fcenet_resnet50 --data_shape 736 1280 --local_ckpt_path /path/to/local_ckpt.ckpt
# or
python tools/export.py --model_name configs/det/fcenet/db_r50_icdar15.yaml --data_shape 736 1280 --local_ckpt_path /path/to/local_ckpt.ckpt
python tools/export.py --model_name configs/det/fcenet/fce_icdar15.yaml --data_shape 736 1280 --local_ckpt_path /path/to/local_ckpt.ckpt
```

其中,`data_shape`是导出MindIR时的模型输入Shape的height和width,下载链接中MindIR对应的shape值见[ICDAR2015注释](#ICDAR2015)。
Expand Down