Skip to content

revert det_metric to commit cec71024186 because commit 837ff68 incurs bug in distributed evaluation #249

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 29, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 28 additions & 25 deletions mindocr/metrics/det_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,20 +2,12 @@

import numpy as np
import mindspore as ms
from mindspore import nn
from mindspore import nn, ms_function
import mindspore.ops as ops
from mindspore import Tensor
from packaging import version
from mindspore import Tensor
from mindspore.communication import get_group_size
from shapely.geometry import Polygon

# WARNING: `mindspore.ms_function` will be deprecated and removed in a future version.
if version.parse(ms.__version__) >= version.parse('2.0.0rc'):
from mindspore import jit
else:
from mindspore import ms_function
jit = ms_function


__all__ = ['DetMetric']


Expand Down Expand Up @@ -92,7 +84,8 @@ def __init__(self, device_num=1, **kwargs):
super().__init__()
self._evaluator = DetectionIoUEvaluator()
self._gt_labels, self._det_labels = [], []
self._all_reduce = None if device_num == 1 else jit(fn=ops.AllReduce())
self.device_num = device_num
self.all_reduce = None if device_num==1 else ops.AllReduce()
self.metric_names = ['recall', 'precision', 'f-score']

def clear(self):
Expand All @@ -118,13 +111,19 @@ def update(self, *inputs):
self._gt_labels.append(gt_label)
self._det_labels.append(det_label)

@staticmethod
def _cal_metrics(det_lst, gt_lst):
@ms_function
def all_reduce_fun(self, x):
res = self.all_reduce(x)
return res

def cal_matrix(self, det_lst, gt_lst):
tp = np.sum((gt_lst == 1) * (det_lst == 1))
fn = np.sum((gt_lst == 1) * (det_lst == 0))
fp = np.sum((gt_lst == 0) * (det_lst == 1))
return tp, fp, fn



def eval(self):
"""
Evaluate by aggregating results from batch update
Expand All @@ -138,20 +137,24 @@ def eval(self):
self._det_labels = np.array([l for label in self._det_labels for l in label])
self._gt_labels = np.array([l for label in self._gt_labels for l in label])

tp, fp, fn = self._cal_metrics(self._det_labels, self._gt_labels)
if self._all_reduce:
tp = float(self._all_reduce(Tensor(tp, ms.float32)).asnumpy())
fp = float(self._all_reduce(Tensor(fp, ms.float32)).asnumpy())
fn = float(self._all_reduce(Tensor(fn, ms.float32)).asnumpy())

recall, precision, f_score = 0., 0., 0.
if tp > 0:
recall = tp / (tp + fn)
precision = tp / (tp + fp)
f_score = 2 * recall * precision / (recall + precision)
tp, fp, fn = self.cal_matrix(self._det_labels, self._gt_labels)
if self.all_reduce:
tp = float(self.all_reduce_fun(Tensor(tp, ms.float32)).asnumpy())
fp = float(self.all_reduce_fun(Tensor(fp, ms.float32)).asnumpy())
fn = float(self.all_reduce_fun(Tensor(fn, ms.float32)).asnumpy())

recall = _safe_divide(tp, (tp + fn))
precision = _safe_divide(tp, (tp + fp))
f_score = _safe_divide(2 * recall * precision, (recall + precision))
return {
'recall': recall,
'precision': precision,
'f-score': f_score
}


def _safe_divide(numerator, denominator, val_if_zero_divide=0.):
if denominator == 0:
return val_if_zero_divide
else:
return numerator / denominator