Skip to content

update model readmes for mindir download urls #181

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 15, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions configs/det/dbnet/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,14 +35,14 @@ The overall architecture of DBNet is presented in _Figure 1._ It consists of mul
## 2. Results

### ICDAR2015

<div align="center">

| **Model** | **Context** | **Backbone** | **Pretrained** | **Recall** | **Precision** | **F-score** | **Train T. (s/epoch)** | **Recipe** | **Download** |
|--------------------|----------------|----------------|----------------|-------------|-------------|-------------|------------------------|-----------------------------|----------------------------------------------------------------------------------------------|
| DBNet (ours) | D910x1-MS1.9-G | ResNet-50 | ImageNet | 81.70% | 85.84% | 83.72% | 35 | [yaml](db_r50_icdar15.yaml) | [weights](https://download.mindspore.cn/toolkits/mindocr/dbnet/dbnet_resnet50-db1df47a.ckpt) |
| **Model** | **Context** | **Backbone** | **Pretrained** | **Recall** | **Precision** | **F-score** | **Train T.** | **Recipe** | **Download** |
|--------------------|----------------|----------------|----------------|-------------|-------------|-------------|-----------|-----------|----------------------------------------------------------------------------------------------|
| DBNet (ours) | D910x1-MS1.9-G | ResNet-50 | ImageNet | 81.70% | 85.84% | 83.72% | 35 s/epoch | [yaml](db_r50_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/dbnet/dbnet_resnet50-db1df47a.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/dbnet/dbnet_resnet50-db1df47a-bcd7ea35c.mindir) |
| DBNet (PaddleOCR) | - | ResNet50_vd | SynthText | 78.72% | 86.41% | 82.38% | - | - | - |
| DBNet++ | D910x1-MS1.9-G | ResNet-50 | ImageNet | 82.02% | 87.38% | 84.62% | - | - | - |

| DBNet++ | D910x1-MS1.9-G | ResNet-50 | ImageNet | 82.02% | 87.38% | 84.62% | - | - | - |
</div>

> More information of DBNet++ is coming soon. The only difference between _DBNet_ and _DBNet++_ is in the _Adaptive Scale Fusion_ module, which is controlled by the `use_asf` parameter in the `neck` module in yaml config file.
Expand Down
4 changes: 2 additions & 2 deletions configs/det/dbnet/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ DBNet的整体架构图如图1所示,包含以下阶段:
### ICDAR2015
<div align="center">

| **模型** | **环境配置** | **骨干网络** | **预训练数据集** | **Recall** | **Precision** | **F-score** | **训练时间(s/epoch)** | **配置文件** | **模型权重下载** |
| **模型** | **环境配置** | **骨干网络** | **预训练数据集** | **Recall** | **Precision** | **F-score** | **训练时间** | **配置文件** | **模型权重下载** |
|-------------------|----------------|---------------|-------------|-------------|---------------|-------------|-------------------|-----------------------------|----------------------------------------------------------------------------------------------|
| DBNet (ours) | D910x1-MS1.9-G | ResNet-50 | ImageNet | 81.70% | 85.84% | 83.72% | 35 | [yaml](db_r50_icdar15.yaml) | [weights](https://download.mindspore.cn/toolkits/mindocr/dbnet/dbnet_resnet50-db1df47a.ckpt) |
| DBNet (ours) | D910x1-MS1.9-G | ResNet-50 | ImageNet | 81.70% | 85.84% | 83.72% | 35 s/epoch | [yaml](db_r50_icdar15.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/dbnet/dbnet_resnet50-db1df47a.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/dbnet/dbnet_resnet50-db1df47a-bcd7ea35c.mindir) |
| DBNet (PaddleOCR) | - | ResNet50_vd | SynthText | 78.72% | 86.41% | 82.38% | - | - | - |
| DBNet++ | D910x1-MS1.9-G | ResNet-50 | ImageNet | 82.02% | 87.38% | 84.62% | - | - | - |

Expand Down
6 changes: 3 additions & 3 deletions configs/rec/crnn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,10 @@ According to our experiments, the evaluation results on public benchmark dataset

<div align="center">

| **Model** | **Context** | **Backbone** | **Avg Accuracy** | **Train T. (s/epoch)** | **Recipe** | **Download** |
| **Model** | **Context** | **Backbone** | **Avg Accuracy** | **Train T.** | **Recipe** | **Download** |
|------------------|----------------|---------------|------------------|------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| CRNN (ours) | D910x8-MS1.8-G | VGG7 | 82.03% | 2445 | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [weights](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) |
| CRNN (ours) | D910x8-MS1.8-G | ResNet34_vd | 84.45% | 2118 | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [weights](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) |
| CRNN (ours) | D910x8-MS1.8-G | VGG7 | 82.03% | 2445 s/epoch | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-3a19e349.mindir) |
| CRNN (ours) | D910x8-MS1.8-G | ResNet34_vd | 84.45% | 2118 s/epoch | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-2f016384.mindir) |
| CRNN (PaddleOCR) | - | ResNet34_vd | 83.99% | - | - | - |

</div>
Expand Down
6 changes: 3 additions & 3 deletions configs/rec/crnn/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,10 +37,10 @@ Table Format:

<div align="center">

| **模型** | **环境配置** | **骨干网络** | **平均准确率** | 训练时间(s/epoch) | **配置文件** | **模型权重下载** |
| **模型** | **环境配置** | **骨干网络** | **平均准确率** | **训练时间** | **配置文件** | **模型权重下载** |
|------------------|----------------|---------------|-----------|---------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| CRNN (ours) | D910x8-MS1.8-G | VGG7 | 82.03% | 2445 | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [weights](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) |
| CRNN (ours) | D910x8-MS1.8-G | ResNet34_vd | 84.45% | 2118 | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [weights](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) |
| CRNN (ours) | D910x8-MS1.8-G | VGG7 | 82.03% | 2445 s/epoch | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-3a19e349.mindir) |
| CRNN (ours) | D910x8-MS1.8-G | ResNet34_vd | 84.45% | 2118 s/epoch | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-2f016384.mindir) |
| CRNN (PaddleOCR) | - | ResNet34_vd | 83.99% | - | - | - |

</div>
Expand Down