Skip to content

example for API #268

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 8 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 152 additions & 0 deletions examples/example_API.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
"""
Different API
=============

example of API
"""

import numpy as np
from scipy.stats import ttest_1samp
from sklearn.datasets import make_circles
from sklearn.linear_model import LogisticRegressionCV
from sklearn.model_selection import KFold
#############################################################################
# Generate data where classes are not linearly separable
# --------------------------------------------------------------
rng = np.random.RandomState(0)
X, y = make_circles(n_samples=500, noise=0.1, factor=0.6, random_state=rng)

#############################################################################
# 3:API 11/06
# ================
from hidimstat_mock.v3 import PFI, LOCO, D0CRT, Knockoff
cv = KFold(n_splits=5, shuffle=True, random_state=0)
###############################################################################
# Variable Importance:
# --------------------
# Variable importance and selection using Permutation Features Importance

vi = PFI(estimator=LogisticRegressionCV(Cs=np.logspace(-3, 3, 5)).fit(X, y))
vi.fit(X, y)
importances_vi = vi.importance(None, None) # vector of n_features
importances_vi, None = vi.importance_fit(X, y, cv) # vector of n_features, not p-value
selection_vi = selection(importances_vi, None, percentage=0.1) # binary vector of n_features
###############################################################################
# Controlled Variable Importance:
# -------------------------------
# Variable importance, p-value and selection using LOCO
cvi.fit(X[train], y[train])
importances_cvi = cvi.importance(X[test], y[test]) # vector of n_features
importances_cvi, pvalue_cvi = cvi.importance(X, y, cv) # vector of n_features
selection_cvi = selection(importance_cvi, pvalue_cvi, threshold=2.0) # binary vector of n_features
###############################################################################
# Individual Variable Selection:
# ------------------------------
# P-values and selection using d0CRT
ivs = D0CRT()
ivs.fit(X, y)
# In this case importance and p-value can be very similar
importances_ivs = ivs.importance(None, None) # vector of n_features
importance_ivs, pvalue_ivs = ivs.importance(X, y, None) # vector of n_features
selection_ivs = selection(importance_ivs, pvalue_ivs, k_best=20.0) # binary vector of n_features
###############################################################################
# Multiple Variable Selection:
# ----------------------------
# selection using Knockoff
mvs = Knockoff()
mvs.fit(X, y)
importance_mvs = mvs.importance(None, None) # vector of n_features
importance_mvs, pvalue_mvs = mvs.importance(X, y, None) # vector of n_features
selection_mvs = selection(importance_mvs, pvalue_mvs, k_best=20.0, threshold_pvalue=0.8) # binary vector of n_features

#############################################################################
# 2:API 26 Mai
# ================
from hidimstat_mock.v2 import PFI, LOCO, D0CRT, Knockoff
###############################################################################
# Variable Importance:
# --------------------
# Variable importance and selection using Permutation Features Importance

vi = PFI(estimator=LogisticRegressionCV(Cs=np.logspace(-3, 3, 5)).fit(X, y))
vi.fit(X, y)
importances_vi = vi.importance(None, None) # vector of n_features
# REMOVED: selection_vi = vi.selection(10) # binary vector of n_features
###############################################################################
# Controlled Variable Importance:
# -------------------------------
# Variable importance, p-value and selection using LOCO
cv = KFold(n_splits=5, shuffle=True, random_state=0)
importances_cvi = []
for train, test in cv.split(X):
cvi = LOCO(
estimator=LogisticRegressionCV(Cs=np.logspace(-3, 3, 5)).fit(X[train], y[train])
)
cvi.fit(X[train], y[train])
importances = cvi.importance(X[test], y[test]) # vector of n_features
importances_cvi.append(importances)
selection, pvalue = cvi.selection(X, y, 10, cv=cv) # binary vector of n_features
###############################################################################
# Individual Variable Selection:
# ------------------------------
# P-values and selection using d0CRT
ivs = D0CRT()
ivs.fit(X, y)
# REMOVED: pvalue_ivs = ivs.importance(None, None) # vector of n_features
selection_vi, pvalue_ivs = ivs.selection(None, None, 0.1) # binary vector of n_features
###############################################################################
# Multiple Variable Selection:
# ----------------------------
# selection using Knockoff
mvs = Knockoff()
mvs.fit(X, y)
# REMOVED: score_mvs = mvs.importance(None, None) # vector of n_features
selection_mvs, ?_? = mvs.selection(None, None, FDP=0.1) # binary vector of n_features
# WARNING: knoclkoff doesn't have p-values?

###############################################################################
# 1:API post sprint 4/4/2025
# ===========================
from hidimstat_mock.v1 import PFI, LOCO, D0CRT, Knockoff
###############################################################################
# Variable Importance:
# --------------------
# Variable importance and selection using Permutation Features Importance

vi = PFI(estimator=LogisticRegressionCV(Cs=np.logspace(-3, 3, 5)).fit(X, y))
vi.fit(X, y)
importances_vi = vi.importance() # vector of n_features
selection_vi = vi.selection(10) # binary vector of n_features
###############################################################################
# Controlled Variable Importance:
# -------------------------------
# Variable importance, p-value and selection using LOCO
cv = KFold(n_splits=5, shuffle=True, random_state=0)
importances_cvi = []
selection_cvi = []
for train, test in cv.split(X):
cvi = LOCO(
estimator=LogisticRegressionCV(Cs=np.logspace(-3, 3, 5)).fit(X[train], y[train])
)
cvi.fit(X[train], y[train])
importances = cvi.importance(X[test], y[test]) # vector of n_features
importances_cvi.append(importances)
selection = cvi.selection(10) # binary vector of n_features
selection_cvi.append(selection)
_, pval_cvi = ttest_1samp(importances_cvi, 0, axis=0, alternative="greater")
###############################################################################
# Individual Variable Selection:
# ------------------------------
# P-values and selection using d0CRT
ivs = D0CRT()
ivs.fit(X, y)
pvalue_ivs = ivs.importance() # vector of n_features
selection_vi = ivs.selection(0.1) # binary vector of n_features
###############################################################################
# Multiple Variable Selection:
# ----------------------------
# selection using Knockoff
mvs = Knockoff()
mvs.fit(X, y)
score_mvs = mvs.importance() # vector of n_features
selection_mvs = mvs.selection(FDP=0.1) # binary vector of n_features