Skip to content

Commit

Permalink
add xgb r and python
Browse files Browse the repository at this point in the history
  • Loading branch information
antinucleon committed Nov 25, 2014
1 parent db4e31d commit 6f49a12
Showing 1 changed file with 3 additions and 1 deletion.
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ For a list of free machine learning books available for download, go [here](http
* [sofia-ml](https://code.google.com/p/sofia-ml/) - Suite of fast incremental algorithms.
* [Shogun](https://github.com/shogun-toolbox/shogun) - The Shogun Machine Learning Toolbox
* [Caffe](http://caffe.berkeleyvision.org) - A deep learning framework developed with cleanliness, readability, and speed in mind. [DEEP LEARNING]
* [CXXNET](https://github.com/antinucleon/cxxnet) - Yet another deep learning framework with less than 1000 lines core code
* [CXXNET](https://github.com/antinucleon/cxxnet) - Yet another deep learning framework with less than 1000 lines core code [DEEP LEARNING]
* [XGBoost](https://github.com/tqchen/xgboost) - A parallelized optimized general purpose gradient boosting library.
* [CUDA](https://code.google.com/p/cuda-convnet/) - This is a fast C++/CUDA implementation of convolutional [DEEP LEARNING]
* [Stan](http://mc-stan.org/) - A probabilistic programming language implementing full Bayesian statistical inference with Hamiltonian Monte Carlo sampling
Expand Down Expand Up @@ -538,6 +538,7 @@ on MNIST digits[DEEP LEARNING]

<a name="python-general-purpose" />
#### General-Purpose Machine Learning
* [XGBoost](https://github.com/tqchen/xgboost) - Python bindings for eXtreme Gradient Boosting (Tree) Library

* [Bayesian Methods for Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers) - Book/iPython notebooks on Probabilistic Programming in Python
* [Featureforge](https://github.com/machinalis/featureforge) A set of tools for creating and testing machine learning features, with a scikit-learn compatible API
Expand Down Expand Up @@ -809,6 +810,7 @@ Angle Regression
* [SuperLearner](https://github.com/ecpolley/SuperLearner) and [subsemble](http://cran.r-project.org/web/packages/subsemble/index.html) - Multi-algorithm ensemble learning packages.
* [Introduction to Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/)
* [fpc](http://cran.r-project.org/web/packages/fpc/index.html) - fpc: Flexible procedures for clustering
* [XGBoost.R](https://github.com/tqchen/xgboost/tree/master/R-package) - R binding for eXtreme Gradient Boosting (Tree) Library

<a name="r-data-analysis" />
#### Data Analysis / Data Visualization
Expand Down

0 comments on commit 6f49a12

Please sign in to comment.