forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add unit tests for fp16 decorators (open-mmlab#2381)
- Loading branch information
Showing
1 changed file
with
301 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,301 @@ | ||
import numpy as np | ||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
|
||
from mmdet.core import auto_fp16, force_fp32 | ||
from mmdet.core.fp16.utils import cast_tensor_type | ||
|
||
|
||
def test_cast_tensor_type(): | ||
inputs = torch.FloatTensor([5.]) | ||
src_type = torch.float32 | ||
dst_type = torch.int32 | ||
outputs = cast_tensor_type(inputs, src_type, dst_type) | ||
assert isinstance(outputs, torch.Tensor) | ||
assert outputs.dtype == dst_type | ||
|
||
inputs = 'tensor' | ||
src_type = str | ||
dst_type = str | ||
outputs = cast_tensor_type(inputs, src_type, dst_type) | ||
assert isinstance(outputs, str) | ||
|
||
inputs = np.array([5.]) | ||
src_type = np.ndarray | ||
dst_type = np.ndarray | ||
outputs = cast_tensor_type(inputs, src_type, dst_type) | ||
assert isinstance(outputs, np.ndarray) | ||
|
||
inputs = dict( | ||
tensor_a=torch.FloatTensor([1.]), tensor_b=torch.FloatTensor([2.])) | ||
src_type = torch.float32 | ||
dst_type = torch.int32 | ||
outputs = cast_tensor_type(inputs, src_type, dst_type) | ||
assert isinstance(outputs, dict) | ||
assert outputs['tensor_a'].dtype == dst_type | ||
assert outputs['tensor_b'].dtype == dst_type | ||
|
||
inputs = [torch.FloatTensor([1.]), torch.FloatTensor([2.])] | ||
src_type = torch.float32 | ||
dst_type = torch.int32 | ||
outputs = cast_tensor_type(inputs, src_type, dst_type) | ||
assert isinstance(outputs, list) | ||
assert outputs[0].dtype == dst_type | ||
assert outputs[1].dtype == dst_type | ||
|
||
inputs = 5 | ||
outputs = cast_tensor_type(inputs, None, None) | ||
assert isinstance(outputs, int) | ||
|
||
|
||
def test_auto_fp16(): | ||
|
||
with pytest.raises(TypeError): | ||
# ExampleObject is not a subclass of nn.Module | ||
|
||
class ExampleObject(object): | ||
|
||
@auto_fp16() | ||
def __call__(self, x): | ||
return x | ||
|
||
model = ExampleObject() | ||
input_x = torch.ones(1, dtype=torch.float32) | ||
model(input_x) | ||
|
||
# apply to all input args | ||
class ExampleModule(nn.Module): | ||
|
||
@auto_fp16() | ||
def forward(self, x, y): | ||
return x, y | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.float32) | ||
input_y = torch.ones(1, dtype=torch.float32) | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y = model(input_x.cuda(), input_y.cuda()) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
|
||
# apply to specified input args | ||
class ExampleModule(nn.Module): | ||
|
||
@auto_fp16(apply_to=('x', )) | ||
def forward(self, x, y): | ||
return x, y | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.float32) | ||
input_y = torch.ones(1, dtype=torch.float32) | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.float32 | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y = model(input_x.cuda(), input_y.cuda()) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.float32 | ||
|
||
# apply to optional input args | ||
class ExampleModule(nn.Module): | ||
|
||
@auto_fp16(apply_to=('x', 'y')) | ||
def forward(self, x, y=None, z=None): | ||
return x, y, z | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.float32) | ||
input_y = torch.ones(1, dtype=torch.float32) | ||
input_z = torch.ones(1, dtype=torch.float32) | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
assert output_z.dtype == torch.float32 | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
assert output_z.dtype == torch.float32 | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y, output_z = model( | ||
input_x.cuda(), y=input_y.cuda(), z=input_z.cuda()) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
assert output_z.dtype == torch.float32 | ||
|
||
# out_fp32=True | ||
class ExampleModule(nn.Module): | ||
|
||
@auto_fp16(apply_to=('x', 'y'), out_fp32=True) | ||
def forward(self, x, y=None, z=None): | ||
return x, y, z | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.half) | ||
input_y = torch.ones(1, dtype=torch.float32) | ||
input_z = torch.ones(1, dtype=torch.float32) | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.float32 | ||
assert output_z.dtype == torch.float32 | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
assert output_z.dtype == torch.float32 | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y, output_z = model( | ||
input_x.cuda(), y=input_y.cuda(), z=input_z.cuda()) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
assert output_z.dtype == torch.float32 | ||
|
||
|
||
def test_force_fp32(): | ||
|
||
with pytest.raises(TypeError): | ||
# ExampleObject is not a subclass of nn.Module | ||
|
||
class ExampleObject(object): | ||
|
||
@force_fp32() | ||
def __call__(self, x): | ||
return x | ||
|
||
model = ExampleObject() | ||
input_x = torch.ones(1, dtype=torch.float32) | ||
model(input_x) | ||
|
||
# apply to all input args | ||
class ExampleModule(nn.Module): | ||
|
||
@force_fp32() | ||
def forward(self, x, y): | ||
return x, y | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.half) | ||
input_y = torch.ones(1, dtype=torch.half) | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y = model(input_x.cuda(), input_y.cuda()) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
|
||
# apply to specified input args | ||
class ExampleModule(nn.Module): | ||
|
||
@force_fp32(apply_to=('x', )) | ||
def forward(self, x, y): | ||
return x, y | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.half) | ||
input_y = torch.ones(1, dtype=torch.half) | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y = model(input_x, input_y) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.half | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y = model(input_x.cuda(), input_y.cuda()) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.half | ||
|
||
# apply to optional input args | ||
class ExampleModule(nn.Module): | ||
|
||
@force_fp32(apply_to=('x', 'y')) | ||
def forward(self, x, y=None, z=None): | ||
return x, y, z | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.half) | ||
input_y = torch.ones(1, dtype=torch.half) | ||
input_z = torch.ones(1, dtype=torch.half) | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
assert output_z.dtype == torch.half | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
assert output_z.dtype == torch.half | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y, output_z = model( | ||
input_x.cuda(), y=input_y.cuda(), z=input_z.cuda()) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.float32 | ||
assert output_z.dtype == torch.half | ||
|
||
# out_fp16=True | ||
class ExampleModule(nn.Module): | ||
|
||
@force_fp32(apply_to=('x', 'y'), out_fp16=True) | ||
def forward(self, x, y=None, z=None): | ||
return x, y, z | ||
|
||
model = ExampleModule() | ||
input_x = torch.ones(1, dtype=torch.float32) | ||
input_y = torch.ones(1, dtype=torch.half) | ||
input_z = torch.ones(1, dtype=torch.half) | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.float32 | ||
assert output_y.dtype == torch.half | ||
assert output_z.dtype == torch.half | ||
|
||
model.fp16_enabled = True | ||
output_x, output_y, output_z = model(input_x, y=input_y, z=input_z) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
assert output_z.dtype == torch.half | ||
|
||
if torch.cuda.is_available(): | ||
model.cuda() | ||
output_x, output_y, output_z = model( | ||
input_x.cuda(), y=input_y.cuda(), z=input_z.cuda()) | ||
assert output_x.dtype == torch.half | ||
assert output_y.dtype == torch.half | ||
assert output_z.dtype == torch.half |