Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[IR] Support float4e2m1 #1908

Merged
merged 7 commits into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 21 additions & 3 deletions onnxscript/ir/_core.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@
_enums.DataType.FLOAT8E5M2FNUZ,
_enums.DataType.INT4,
_enums.DataType.UINT4,
_enums.DataType.FLOAT4E2M1,
)
)

Expand Down Expand Up @@ -182,7 +183,7 @@
When the dtype is not one of the numpy native dtypes, the value needs need to be:

- ``int8`` or ``uint8`` for int4, with the sign bit extended to 8 bits.
- ``uint8`` for uint4.
- ``uint8`` for uint4 or float4.
- ``uint8`` for 8-bit data types.
- ``uint16`` for bfloat16

Expand Down Expand Up @@ -213,6 +214,11 @@
raise TypeError(
f"The numpy array dtype must be uint8 or or ml_dtypes.uint4 (not {array.dtype}) for IR data type {dtype}."
)
if dtype == _enums.DataType.FLOAT4E2M1:
if array.dtype not in (np.uint8, ml_dtypes.float4_e2m1fn):
raise TypeError(

Check warning on line 219 in onnxscript/ir/_core.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/ir/_core.py#L219

Added line #L219 was not covered by tests
f"The numpy array dtype must be uint8 or ml_dtypes.float4_e2m1fn (not {array.dtype}) for IR data type {dtype}."
)
return

try:
Expand Down Expand Up @@ -256,6 +262,8 @@
return array.view(ml_dtypes.int4)
if dtype == _enums.DataType.UINT4:
return array.view(ml_dtypes.uint4)
if dtype == _enums.DataType.FLOAT4E2M1:
return array.view(ml_dtypes.float4_e2m1fn)
return array


Expand Down Expand Up @@ -431,7 +439,11 @@
"""
# TODO(justinchuby): Support DLPack
array = self.numpy()
if self.dtype in {_enums.DataType.INT4, _enums.DataType.UINT4}:
if self.dtype in {
_enums.DataType.INT4,
_enums.DataType.UINT4,
_enums.DataType.FLOAT4E2M1,
}:
# Pack the array into int4
array = _type_casting.pack_int4(array)
else:
Expand Down Expand Up @@ -609,7 +621,11 @@
)
# Handle the byte order correctly by always using little endian
dt = np.dtype(self.dtype.numpy()).newbyteorder("<")
if self.dtype in {_enums.DataType.INT4, _enums.DataType.UINT4}:
if self.dtype in {
_enums.DataType.INT4,
_enums.DataType.UINT4,
_enums.DataType.FLOAT4E2M1,
}:
# Use uint8 to read in the full byte. Otherwise ml_dtypes.int4 will clip the values
dt = np.dtype(np.uint8).newbyteorder("<")
count = self.size // 2 + self.size % 2
Expand All @@ -622,6 +638,8 @@
self._array = _type_casting.unpack_int4(self._array, shape)
elif self.dtype == _enums.DataType.UINT4:
self._array = _type_casting.unpack_uint4(self._array, shape)
elif self.dtype == _enums.DataType.FLOAT4E2M1:
self._array = _type_casting.unpack_float4e2m1(self._array, shape)
else:
self._array = self._array.reshape(shape)

Expand Down
36 changes: 32 additions & 4 deletions onnxscript/ir/_core_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@
("int4", np.int8, ir.DataType.INT4),
("int4_uint8", np.uint8, ir.DataType.INT4),
("uint4", np.uint8, ir.DataType.UINT4),
("float4e2m1", np.uint8, ir.DataType.FLOAT4E2M1),
]
)
def test_init_with_non_native_numpy_dtype(self, _: str, np_dtype, dtype: ir.DataType):
Expand Down Expand Up @@ -131,34 +132,48 @@
tensor = _core.Tensor(torch_tensor, dtype=ir.DataType.FLOAT)
self.assertEqual(tensor.tobytes(), array.tobytes())

def test_tobtyes_returns_packed_data_for_int4(self):
def test_tobytes_returns_packed_data_for_int4(self):
array = np.array([-8, -1, 0, 1, 2, 7, 1], dtype=np.int8)
# Test odd sized array
assert len(array) % 2 == 1
tensor = _core.Tensor(array, dtype=ir.DataType.INT4)
self.assertEqual(tensor.tobytes(), b"\xf8\x10r\x01")

def test_tobtyes_returns_packed_data_for_int4_ml_dtypes(self):
def test_tobytes_returns_packed_data_for_int4_ml_dtypes(self):
array = np.array([-8, -1, 0, 1, 2, 7, 1], dtype=ml_dtypes.int4)
# Test odd sized array
assert len(array) % 2 == 1
tensor = _core.Tensor(array, dtype=ir.DataType.INT4)
self.assertEqual(tensor.tobytes(), b"\xf8\x10r\x01")

def test_tobtyes_returns_packed_data_for_uint4(self):
def test_tobytes_returns_packed_data_for_uint4(self):
array = np.array([0, 1, 2, 7, 15], dtype=np.uint8)
# Test odd sized array
assert len(array) % 2 == 1
tensor = _core.Tensor(array, dtype=ir.DataType.UINT4)
self.assertEqual(tensor.tobytes(), b"\x10r\x0f")

def test_tobtyes_returns_packed_data_for_uint4_ml_dtypes(self):
def test_tobytes_returns_packed_data_for_uint4_ml_dtypes(self):
array = np.array([0, 1, 2, 7, 15], dtype=ml_dtypes.uint4)
# Test odd sized array
assert len(array) % 2 == 1
tensor = _core.Tensor(array, dtype=ir.DataType.UINT4)
self.assertEqual(tensor.tobytes(), b"\x10r\x0f")

def test_tobytes_returns_packed_data_for_float4e2m1(self):
array = np.array([0, 1, 2, 7, 15], dtype=np.uint8)
# Test odd sized array
assert len(array) % 2 == 1
tensor = _core.Tensor(array, dtype=ir.DataType.FLOAT4E2M1)
self.assertEqual(tensor.tobytes(), b"\x10r\x0f")

def test_tobytes_returns_packed_data_for_float4e2m1_ml_dtypes(self):
array = np.array([0, 1, 2, 7, 15], dtype=np.uint8)
# Test odd sized array
assert len(array) % 2 == 1
tensor = _core.Tensor(array, dtype=ir.DataType.FLOAT4E2M1)
self.assertEqual(tensor.tobytes(), b"\x10r\x0f")

def test_metadata(self):
array = np.random.rand(1, 2).astype(np.float32)
tensor = _core.Tensor(array)
Expand Down Expand Up @@ -444,6 +459,19 @@
# about permission errors
del tensor

def test_external_tensor_float4e2m1(self):
expected_array = np.array([0, 1, 2, 7, 15]).view(ml_dtypes.float4_e2m1fn)
tensor_proto = ir.serde.serialize_tensor(
ir.Tensor(expected_array, dtype=ir.DataType.FLOAT4E2M1)
)
with tempfile.TemporaryDirectory() as temp_dir:
_to_external_tensor(tensor_proto, temp_dir, "tensor.bin")
tensor = ir.serde.deserialize_tensor(tensor_proto, temp_dir)
np.testing.assert_array_equal(tensor.numpy(), expected_array)
# Close the mmap file by deleting the reference to tensor so Windows doesn't complain
# about permission errors
del tensor
Dismissed Show dismissed Hide dismissed

def test_external_tensor_empty_tensor(self):
expected_array = np.array([], dtype=np.float32)
tensor_proto = ir.serde.serialize_tensor(ir.Tensor(expected_array))
Expand Down
9 changes: 9 additions & 0 deletions onnxscript/ir/_enums.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ class DataType(enum.IntEnum):
FLOAT8E5M2FNUZ = 20
UINT4 = 21
INT4 = 22
FLOAT4E2M1 = 23

@classmethod
def from_numpy(cls, dtype: np.dtype) -> DataType:
Expand Down Expand Up @@ -121,6 +122,7 @@ def __str__(self) -> str:
DataType.FLOAT8E5M2FNUZ: 1,
DataType.UINT4: 0.5,
DataType.INT4: 0.5,
DataType.FLOAT4E2M1: 0.5,
}


Expand Down Expand Up @@ -150,5 +152,12 @@ def __str__(self) -> str:
np.dtype(ml_dtypes.uint4): DataType.UINT4,
}

# TODO(after min req for ml_dtypes>=0.5): Move this inside _NP_TYPE_TO_DATA_TYPE
_NP_TYPE_TO_DATA_TYPE.update(
{np.dtype(ml_dtypes.float4_e2m1fn): DataType.FLOAT4E2M1}
if hasattr(ml_dtypes, "float4_e2m1fn")
else {}
)

# ONNX DataType to Numpy dtype.
_DATA_TYPE_TO_NP_TYPE = {v: k for k, v in _NP_TYPE_TO_DATA_TYPE.items()}
2 changes: 2 additions & 0 deletions onnxscript/ir/_enums_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ def test_enums_are_the_same_as_spec(self):
self.assertEqual(_enums.DataType.FLOAT8E5M2FNUZ, onnx.TensorProto.FLOAT8E5M2FNUZ)
self.assertEqual(_enums.DataType.UINT4, onnx.TensorProto.UINT4)
self.assertEqual(_enums.DataType.INT4, onnx.TensorProto.INT4)
if hasattr(onnx.TensorProto, "FLOAT4E2M1"):
justinchuby marked this conversation as resolved.
Show resolved Hide resolved
self.assertEqual(_enums.DataType.FLOAT4E2M1, onnx.TensorProto.FLOAT4E2M1)
self.assertEqual(_enums.DataType.UNDEFINED, onnx.TensorProto.UNDEFINED)

def test_from_numpy_takes_np_dtype_and_returns_data_type(self):
Expand Down
15 changes: 15 additions & 0 deletions onnxscript/ir/_type_casting.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,3 +89,18 @@ def unpack_int4(
"""
unpacked = _unpack_uint4_as_uint8(data, dims)
return _extend_int4_sign_bits(unpacked).view(ml_dtypes.int4)


def unpack_float4e2m1(
data: npt.NDArray[np.uint8], dims: Sequence[int]
) -> npt.NDArray[ml_dtypes.float4_e2m1fn]:
"""Convert a packed float4e2m1 array to unpacked float4e2m1 array.

Args:
data: A numpy array.
dims: The dimensions are used to reshape the unpacked buffer.

Returns:
A numpy array of float32 reshaped to dims.
"""
return _unpack_uint4_as_uint8(data, dims).view(ml_dtypes.float4_e2m1fn)
justinchuby marked this conversation as resolved.
Show resolved Hide resolved
3 changes: 3 additions & 0 deletions onnxscript/ir/serde.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,6 +323,8 @@
return _type_casting.unpack_int4(array.astype(np.uint8), self._proto.dims)
elif dtype == _enums.DataType.UINT4:
return _type_casting.unpack_uint4(array.astype(np.uint8), self._proto.dims)
elif dtype == _enums.DataType.FLOAT4E2M1:
return _type_casting.unpack_float4e2m1(array.astype(np.uint8), self._proto.dims)

Check warning on line 327 in onnxscript/ir/serde.py

View check run for this annotation

Codecov / codecov/patch

onnxscript/ir/serde.py#L327

Added line #L327 was not covered by tests
else:
# Otherwise convert to the correct dtype and reshape
# Note we cannot use view() here because the storage dtype may not be the same size as the target
Expand Down Expand Up @@ -369,6 +371,7 @@
_enums.DataType.FLOAT8E5M2FNUZ,
_enums.DataType.INT4,
_enums.DataType.UINT4,
_enums.DataType.FLOAT4E2M1,
}:
# uint4 and int4 values are already packed, even when stored as int32
# so we don't need to pack them again
Expand Down
Loading