Open
Description
openedon Aug 26, 2024
Describe the issue
When running an inference session with a binding to GPU memory and using the CPU execution provider, onnxruntime will segfault. I would expect a helpful error message instead.
To reproduce
import onnxruntime as ort
import torch
import torch.nn as nn
import numpy as np
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(4, 2)
def forward(self, x):
return self.fc1(x)
torch_model = MyModel()
torch_input = torch.randn(1, 4)
onnx_model = torch.onnx.dynamo_export(torch_model, torch_input)
onnx_model.save("model.onnx")
sess = ort.InferenceSession("model.onnx", providers=["CPUExecutionProvider"])
binding = sess.io_binding()
for n in sess.get_inputs():
binding.bind_ortvalue_input(
n.name,
ort.OrtValue.ortvalue_from_numpy(
np.zeros(shape=n.shape, dtype=np.float32)))
for n in sess.get_outputs():
binding.bind_ortvalue_output(
n.name,
ort.OrtValue.ortvalue_from_numpy(
np.zeros(shape=n.shape, dtype=np.float32),
device_type='cuda'))
sess.run_with_iobinding(binding)
This exits with code 139 and prints:
Segmentation fault (core dumped)
If device_type
is changed to cpu
then it runs correctly.
Urgency
Not urgent.
Platform
Linux
OS Version
Fedora 40
ONNX Runtime Installation
Released Package
ONNX Runtime Version or Commit ID
1.19.0
ONNX Runtime API
Python
Architecture
X64
Execution Provider
Default CPU
Execution Provider Library Version
No response
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment