Skip to content
This repository was archived by the owner on Nov 16, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions src/DotNetBridge/NativeDataInterop.cs
Original file line number Diff line number Diff line change
Expand Up @@ -213,8 +213,11 @@ private static unsafe void SendViewToNativeAsDataFrame(IChannel ch, EnvironmentB
}
else
{
for (int i = 0; i < nSlots; i++)
AddUniqueName(name + "." + i, ref nameIndices, ref nameUtf8Bytes);
if (nSlots == 1)
AddUniqueName(name, ref nameIndices, ref nameUtf8Bytes);
else
for (int i = 0; i < nSlots; i++)
AddUniqueName(name + "." + i, ref nameIndices, ref nameUtf8Bytes);
}
}
else
Expand Down
96 changes: 51 additions & 45 deletions src/python/tests_extended/test_export_to_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@
from nimbusml.preprocessing.missing_values import Filter, Handler, Indicator
from nimbusml.preprocessing.normalization import Binner, GlobalContrastRowScaler, LpScaler
from nimbusml.preprocessing.schema import (ColumnConcatenator, TypeConverter,
ColumnDuplicator, ColumnSelector)
ColumnDuplicator, ColumnSelector, PrefixColumnConcatenator)
from nimbusml.preprocessing.text import CharTokenizer, WordTokenizer
from nimbusml.timeseries import (IidSpikeDetector, IidChangePointDetector,
SsaSpikeDetector, SsaChangePointDetector,
Expand Down Expand Up @@ -186,6 +186,7 @@
Loader(columns={'ImgPath': 'Path'}),
PixelExtractor(columns={'ImgPixels': 'ImgPath'}),
]),
'PrefixColumnConcatenator': PrefixColumnConcatenator(columns={'Features': 'Sepal_'}),
'Resizer': Pipeline([
Loader(columns={'ImgPath': 'Path'}),
Resizer(image_width=227, image_height=227,
Expand Down Expand Up @@ -264,71 +265,76 @@
}

EXPECTED_RESULTS = {
'AveragedPerceptronBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'AveragedPerceptronBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'CharTokenizer': {'cols': [('SentimentText_Transform.%03d' % i, 'SentimentText_Transform.%03d' % i)
for i in range(0, 422)]},
'ColumnDuplicator': {'cols': [('dup', 'dup.0')]},
'ColumnConcatenator': {'num_cols': 11, 'cols': 0},
'ColumnDuplicator': {'cols': [('dup', 'dup')]},
'ColumnSelector': {
'num_cols': 2,
'cols': [('Sepal_Width', 'Sepal_Width.0'), ('Sepal_Length', 'Sepal_Length.0')]
'cols': [('Sepal_Width', 'Sepal_Width'), ('Sepal_Length', 'Sepal_Length')]
},
#'EnsembleClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
#'EnsembleRegressor': {'cols': [('Score', 'Score.0')]},
'FastForestBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'FastForestRegressor': {'cols': [('Score', 'Score.0')]},
'FastLinearBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'FastLinearClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'FastLinearRegressor': {'cols': [('Score', 'Score.0')]},
'FastTreesBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'FastTreesRegressor': {'cols': [('Score', 'Score.0')]},
'FastTreesTweedieRegressor': {'cols': [('Score', 'Score.0')]},
'FromKey': {'cols': [('Sepal_Length', 'Sepal_Length.0'), ('Label', 'Label.0')]},
#'EnsembleClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
#'EnsembleRegressor': {'cols': [('Score', 'Score')]},
'FastForestBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'FastForestRegressor': {'cols': [('Score', 'Score')]},
'FastLinearBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'FastLinearClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'FastLinearRegressor': {'cols': [('Score', 'Score')]},
'FastTreesBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'FastTreesRegressor': {'cols': [('Score', 'Score')]},
'FastTreesTweedieRegressor': {'cols': [('Score', 'Score')]},
'FromKey': {'cols': [('Sepal_Length', 'Sepal_Length'), ('Label', 'Label')]},
'GlobalContrastRowScaler': {'cols': [
('normed_columns.Petal_Length', 'normed_columns.0'),
('normed_columns.Sepal_Width', 'normed_columns.1'),
('normed_columns.Sepal_Length', 'normed_columns.2')
('normed_columns.Petal_Length', 'normed_columns.Petal_Length'),
('normed_columns.Sepal_Width', 'normed_columns.Sepal_Width'),
('normed_columns.Sepal_Length', 'normed_columns.Sepal_Length')
]},
'Handler': {'cols': [
('NewVals.NewVals', 'NewVals.0'),
('NewVals.IsMissing.NewVals', 'NewVals.1')
('NewVals.NewVals', 'NewVals.NewVals'),
('NewVals.IsMissing.NewVals', 'NewVals.IsMissing.NewVals')
]},
'Indicator': {'cols': [('Has_Nan', 'Has_Nan.0')]},
'KMeansPlusPlus': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'LightGbmBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'LightGbmClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'LightGbmRanker': {'cols': [('Score', 'Score.0')]},
'LightGbmRegressor': {'cols': [('Score', 'Score.0')]},
'LinearSvmBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'LogisticRegressionBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'LogisticRegressionClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'Indicator': {'cols': [('Has_Nan', 'Has_Nan')]},
'KMeansPlusPlus': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'LightGbmBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'LightGbmClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'LightGbmRanker': {'cols': [('Score', 'Score')]},
'LightGbmRegressor': {'cols': [('Score', 'Score')]},
'LinearSvmBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'LogisticRegressionBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'LogisticRegressionClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'LpScaler': {'cols': [
('normed_columns.Petal_Length', 'normed_columns.0'),
('normed_columns.Sepal_Width', 'normed_columns.1'),
('normed_columns.Sepal_Length', 'normed_columns.2')
('normed_columns.Petal_Length', 'normed_columns.Petal_Length'),
('normed_columns.Sepal_Width', 'normed_columns.Sepal_Width'),
('normed_columns.Sepal_Length', 'normed_columns.Sepal_Length')
]},
'MeanVarianceScaler': {'cols': list(zip(
['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Setosa'],
['Sepal_Length.0', 'Sepal_Width.0', 'Petal_Length.0', 'Petal_Width.0', 'Setosa.0']
['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Setosa']
))},
'MinMaxScaler': {'cols': list(zip(
['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Setosa'],
['Sepal_Length.0', 'Sepal_Width.0', 'Petal_Length.0', 'Petal_Width.0', 'Setosa.0']
['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width', 'Setosa']
))},
#'MutualInformationSelector',
'NGramFeaturizer': {'num_cols': 273, 'cols': 0},
'NaiveBayesClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'NaiveBayesClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'OneHotVectorizer': {'cols': list(zip(
['education_str.0-5yrs', 'education_str.6-11yrs', 'education_str.12+ yrs'],
['education_str.0', 'education_str.1', 'education_str.2']
['education_str.0-5yrs', 'education_str.6-11yrs', 'education_str.12+ yrs']
))},
'OnlineGradientDescentRegressor': {'cols': [('Score', 'Score.0')]},
'OrdinaryLeastSquaresRegressor': {'cols': [('Score', 'Score.0')]},
'OnlineGradientDescentRegressor': {'cols': [('Score', 'Score')]},
'OrdinaryLeastSquaresRegressor': {'cols': [('Score', 'Score')]},
'PcaTransformer': {'num_cols': 9, 'cols': 0},
'PoissonRegressionRegressor': {'cols': [('Score', 'Score.0')]},
'SgdBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'SymSgdBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel.0')]},
'ToKey': {'cols': [('edu_1', 'edu_1.0'), ('parity_1', 'parity_1.0')]},
'TypeConverter': {'cols': [('group', 'group.0')]},
'PoissonRegressionRegressor': {'cols': [('Score', 'Score')]},
'PrefixColumnConcatenator': {'cols': [
('Features.Sepal_Length', 'Features.Sepal_Length'),
('Features.Sepal_Width', 'Features.Sepal_Width')
]},
'SgdBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'SymSgdBinaryClassifier': {'cols': [('PredictedLabel', 'PredictedLabel')]},
'ToKey': {'cols': [('edu_1', 'edu_1'), ('parity_1', 'parity_1')]},
'TypeConverter': {'cols': [('group', 'group')]},
'WordTokenizer': {'num_cols': 73, 'cols': 0}
}

Expand Down Expand Up @@ -575,8 +581,8 @@ def test_export_to_onnx(estimator, class_name):
for entry_point in entry_points:
class_name = entry_point['NewName']

# if not class_name in ['NGramFeaturizer']:
# continue
# if not class_name in ['CharTokenizer']:
# continue

print('\n===========> %s' % class_name)

Expand Down