ONNX model for FastLinearClassifier predictions are 1 based vs 0 based #431
Description
Repro
`
from nimbusml.datasets import get_dataset
from nimbusml.linear_model import FastLinearClassifier
from nimbusml.preprocessing import OnnxRunner
iris_df = get_dataset("iris").as_df()
iris_df.drop(['Species'], axis=1, inplace=True)
iris_no_label_df = iris_df.drop(['Label'], axis=1)
iris_binary_df = iris_no_label_df.rename(columns={'Setosa': 'Label'})
predictor = FastLinearClassifier()
predictor.fit(iris_binary_df)
print(predictor.predict(iris_binary_df))
predictor.export_to_onnx("test.onnx", 'com.microsoft.ml')
onnxrunner = OnnxRunner(model_file="test.onnx")
print(onnxrunner.fit_transform(iris_binary_df))
`
Elapsed time: 00:00:00.9034678
0 1.0
1 1.0
2 1.0
3 1.0
4 1.0
...
145 0.0
146 0.0
147 0.0
148 0.0
149 0.0
Name: PredictedLabel, Length: 150, dtype: float64
Sepal_Length Sepal_Width Petal_Length ... PredictedLabel.onnx.0 Score.onnx.0 Score.onnx.1
0 5.1 3.5 1.4 ... 2.0 0.302603 0.697397
1 4.9 3.0 1.4 ... 2.0 0.333512 0.666488
2 4.7 3.2 1.3 ... 2.0 0.310926 0.689074
3 4.6 3.1 1.5 ... 2.0 0.331948 0.668052
4 5.0 3.6 1.4 ... 2.0 0.295445 0.704555
.. ... ... ... ... ... ... ...
145 6.7 3.0 5.2 ... 1.0 0.953864 0.046136
146 6.3 2.5 5.0 ... 1.0 0.934170 0.065830
147 6.5 3.0 5.2 ... 1.0 0.936460 0.063540
148 6.2 3.4 5.4 ... 1.0 0.950669 0.049331
149 5.9 3.0 5.1 ... 1.0 0.917651 0.082349
[150 rows x 25 columns]