Skip to content
This repository has been archived by the owner on Nov 16, 2023. It is now read-only.

Commit

Permalink
Add 1.5 (#344)
Browse files Browse the repository at this point in the history
  • Loading branch information
najeeb-kazmi authored Oct 18, 2019
1 parent c286df1 commit 310af48
Show file tree
Hide file tree
Showing 2 changed files with 103 additions and 82 deletions.
101 changes: 101 additions & 0 deletions docs/release-notes/release-1.5.0.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
# [NimbusML](https://docs.microsoft.com/en-us/nimbusml/overview) 1.5.0

## **New Features**

- **Initial implementation of `csr_matrix` output support.**

[PR#250](https://github.com/microsoft/NimbusML/pull/250)
Add support for data output in `scipy.sparse.csr_matrix` format.

```python
xf = OneHotVectorizer(columns={'c0':'c0', 'c1':'c1'})
xf.fit(train_df)
result = xf.transform(train_df, as_csr=True)
```

- **Permutation Feature Importance for model interpretibility.**

[PR#279](https://github.com/microsoft/NimbusML/pull/279)
Adds `permutation_feature_importance()` method to `Pipeline` and
predictor estimators, enabling evaluation of model-wide feature
importances on any dataset with same schema as the dataset used
to fit the `Pipeline`.

```python
pipe = Pipeline([
LogisticRegressionBinaryClassifier(label='label', feature=['feature'])
])
pipe.fit(data)
pipe.permutation_feature_importance(data)
```

- **Initial implementation of DateTime input and output column support.**

[PR#290](https://github.com/microsoft/NimbusML/pull/290)
Add initial support for input and output of Pandas DateTime columns.

- **Initial implementation of LpScaler.**

[PR#253](https://github.com/microsoft/NimbusML/pull/253)
Normalize vectors (rows) individually by rescaling them to unit norm (L2, L1 or LInf).
Performs the following operation on a vector X: Y = (X - M) / D, where M is mean and D
is either L2 norm, L1 norm or LInf norm.

- **Add support for variable length vector output.**

[PR#267](https://github.com/microsoft/NimbusML/pull/267)
Support output of columns returned from ML.Net which contain variable length vectors.

- **Save `predictor_model` when pickling a `Pipeline`.**

[PR#295](https://github.com/microsoft/NimbusML/pull/295)

- **Initial implementation of the WordTokenizer transform.**

[PR#296](https://github.com/microsoft/NimbusML/pull/296)

- **Add support for summary output from tree based predictors.**

[PR#298](https://github.com/microsoft/NimbusML/pull/298)

## **Bug Fixes**

- **Fixed `Pipeline.transform()` in transform only `Pipeline` fails if y column is provided **

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Enable calling `.transform()` on a `Pipeline` containing only transforms when the y column is provided

- **Fix issue when using `predict_proba` or `decision_function` with combined models.**

[PR#272](https://github.com/microsoft/NimbusML/pull/272)

- **Fix `Pipeline._extract_classes_from_headers` was not checking for valid steps.**

[PR#292](https://github.com/microsoft/NimbusML/pull/292)

- **Fix BinaryDataStream was not valid as input for transformer.**

[PR#307](https://github.com/microsoft/NimbusML/pull/307)

- **Fix casing for the installPythonPackages build.sh argument.**

[PR#256](https://github.com/microsoft/NimbusML/pull/256)

## **Breaking Changes**

- **Removed `y` parameter from `Pipeline.transform()`**

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Removed `y` parameter from `Pipeline.transform()` as it is not needed nor used for transforming data with a fitted `Pipeline`.

## **Enhancements**

None.

## **Documentation and Samples**

None.

## **Remarks**

None.
84 changes: 2 additions & 82 deletions release-next.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,91 +2,11 @@

## **New Features**

- **Initial implementation of `csr_matrix` output support.**

[PR#250](https://github.com/microsoft/NimbusML/pull/250)
Add support for data output in `scipy.sparse.csr_matrix` format.

```python
xf = OneHotVectorizer(columns={'c0':'c0', 'c1':'c1'})
xf.fit(train_df)
result = xf.transform(train_df, as_csr=True)
```

- **Permutation Feature Importance for model interpretibility.**

[PR#279](https://github.com/microsoft/NimbusML/pull/279)
Adds `permutation_feature_importance()` method to `Pipeline` and
predictor estimators, enabling evaluation of model-wide feature
importances on any dataset with same schema as the dataset used
to fit the `Pipeline`.

```python
pipe = Pipeline([
LogisticRegressionBinaryClassifier(label='label', feature=['feature'])
])
pipe.fit(data)
pipe.permutation_feature_importance(data)
```

- **Initial implementation of DateTime input and output column support.**

[PR#290](https://github.com/microsoft/NimbusML/pull/290)
Add initial support for input and output of Pandas DateTime columns.

- **Initial implementation of LpScaler.**

[PR#253](https://github.com/microsoft/NimbusML/pull/253)
Normalize vectors (rows) individually by rescaling them to unit norm (L2, L1 or LInf).
Performs the following operation on a vector X: Y = (X - M) / D, where M is mean and D
is either L2 norm, L1 norm or LInf norm.

- **Add support for variable length vector output.**

[PR#267](https://github.com/microsoft/NimbusML/pull/267)
Support output of columns returned from ML.Net which contain variable length vectors.

- **Save `predictor_model` when pickling a `Pipeline`.**

[PR#295](https://github.com/microsoft/NimbusML/pull/295)

- **Initial implementation of the WordTokenizer transform.**

[PR#296](https://github.com/microsoft/NimbusML/pull/296)

- **Add support for summary output from tree based predictors.**

[PR#298](https://github.com/microsoft/NimbusML/pull/298)
None.

## **Bug Fixes**

- **Fixed `Pipeline.transform()` in transform only `Pipeline` fails if y column is provided **

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Enable calling `.transform()` on a `Pipeline` containing only transforms when the y column is provided

- **Fix issue when using `predict_proba` or `decision_function` with combined models.**

[PR#272](https://github.com/microsoft/NimbusML/pull/272)

- **Fix `Pipeline._extract_classes_from_headers` was not checking for valid steps.**

[PR#292](https://github.com/microsoft/NimbusML/pull/292)

- **Fix BinaryDataStream was not valid as input for transformer.**

[PR#307](https://github.com/microsoft/NimbusML/pull/307)

- **Fix casing for the installPythonPackages build.sh argument.**

[PR#256](https://github.com/microsoft/NimbusML/pull/256)

## **Breaking Changes**

- **Removed `y` parameter from `Pipeline.transform()`**

[PR#294](https://github.com/microsoft/NimbusML/pull/294)
Removed `y` parameter from `Pipeline.transform()` as it is not needed nor used for transforming data with a fitted `Pipeline`.
None.

## **Enhancements**

Expand Down

0 comments on commit 310af48

Please sign in to comment.